Metagenomic analysis manifesting intrinsic relatedness between antibiotic resistance genes and sulfate- and iron-reducing microbes in sediment cores of the Pearl River Estuary.
Autor: | Li Z; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China., Lin L; Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China., Xie X; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China., Ming L; Technical Center of Gongbei Customs District, Zhuhai, 519000, China., Li S; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China., Liu L; Department of Foodborne Disease and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China., Yuan K; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China., Lin L; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China., Hu L; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China., Luan T; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China., Chen B; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China. Electronic address: chenbw5@mail.sysu.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2024 Dec 15; Vol. 363 (Pt 1), pp. 125176. Date of Electronic Publication: 2024 Oct 22. |
DOI: | 10.1016/j.envpol.2024.125176 |
Abstrakt: | Antibiotic resistance is an increasingly concerned hotspot of human health. Microbial determinants that may affect the profiles of antibiotic resistance genes (ARGs) in the environments need be explored. Here, sediment cores in the Pearl River Estuary (PRE) were analyzed using metagenomic approaches. ARGs were vertically stratified in the PRE sediment cores in terms of both diversity and absolute levels. Multidrug resistance genes could account for approximately 65.0% of the total ARGs, followed by sulfonamides (19.1%), aminoglycosides (5.9%), beta-lactams (4.5%), etc. ARGs related to aminoglycosides, lincosamides, macrolides, sulfonamides and tetracyclines were preferentially enriched in the surface layers of sediment cores. Sulfate-reducing microbes (SRMs) (e.g., Desulfocapsa and Desulfobulbus) and iron-reducing microbes (IRMs) (e.g., Pseudomonas and Sulfurospirillum) were consistently popular and dominant in the PRE sediment cores. The total levels of both SRMs and IRMs were significantly correlated with those of ARGs in the PRE sediment cores (p < 0.01). Network analysis showed that SRM and IRM genera (i.e., Pseudomonas, Shewanella, and Desulfovibrio) had the high co-occurrence with multiple ARG subtypes in the PRE sediment cores such as rsmA, mexK, and mexF. This study highlighted that anaerobic microbes could play significant roles in shaping vertical ARG distribution in the sediments of aquatic environments. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |