Boosting Coercivity of 3D Printed Hard Magnets through Nano-Modification of the Powder Feedstock.
Autor: | Gabriel P; Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany., Nallathambi V; Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany.; Max Planck Institute for Sustainable Materials, 40237, Düsseldorf, Germany., Liu J; Functional Materials, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Staab F; Physical Metallurgy, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Oyedeji TD; Mechanics of Functional Materials, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Yang Y; Mechanics of Functional Materials, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Hantke N; Chair of Hybrid Additive Manufacturing, Ruhr-University Bochum, 44801, Bochum, Germany., Adabifiroozjaei E; Advanced Electron Microscopy Division, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Recalde-Benitez O; Advanced Electron Microscopy Division, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Molina-Luna L; Advanced Electron Microscopy Division, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Rao Z; Max Planck Institute for Sustainable Materials, 40237, Düsseldorf, Germany., Gault B; Max Planck Institute for Sustainable Materials, 40237, Düsseldorf, Germany.; Department of Materials, Imperial College London, London, SW7 2AZ, UK., Sehrt JT; Chair of Hybrid Additive Manufacturing, Ruhr-University Bochum, 44801, Bochum, Germany., Scheibel F; Functional Materials, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Skokov K; Functional Materials, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Xu BX; Mechanics of Functional Materials, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Durst K; Physical Metallurgy, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Gutfleisch O; Functional Materials, Institute of Material Science, Technical University of Darmstadt, 64287, Darmstadt, Germany., Barcikowski S; Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany., Ziefuss AR; Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Adv Sci (Weinh)] 2024 Dec; Vol. 11 (46), pp. e2407972. Date of Electronic Publication: 2024 Oct 22. |
DOI: | 10.1002/advs.202407972 |
Abstrakt: | The demand for strong, compact permanent magnets essential for the energy transition drives innovation in magnet manufacturing. Additive manufacturing, particularly Powder Bed Fusion of metals using a laser beam (PBF-LB/M), offers potential for near-net-shaped Nd-Fe-B permanent magnets but often falls short compared to conventional methods. A less explored strategy to enhance these magnets is feedstock modification with nanoparticles. It is demonstrated that modifying a Nd-Fe-B-based feedstock with 1 wt.% Ag nanoparticles boost the coercivity of the magnets to a record value of 935 ± 6 kA m -1 without further post-processing or heat treatments. Suitable volumetric energy densities for the PBF-LB/M process are determined using finite element simulations predicting melt pool behavior and part density. Microstructural analyses reveal finer grain sizes and more equiaxed nanocrystalline structures due to the modification. Atom probe tomography identifies three phases in the Ag-modified samples, with Ag forming nanophase regions with rare-earth elements near the amorphous Zr-Ti-B-rich intergranular phase, potentially decoupling the Nd (© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |