Quantitative Analysis of Protein-Protein Equilibrium Constants in Cellular Environments Using Single-Molecule Localization Microscopy.

Autor: Marcano-García LF; Centro de Investigaciones en Bionanociencias - 'Elizabeth Jares-Erijman' (CIBION), CONICET, Godoy Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina., Zaza C; London Centre for Nanotechnology, University College London, 19 Gordon Street, WC1H 0AH London, United Kingdom., Dalby OPL; London Centre for Nanotechnology, University College London, 19 Gordon Street, WC1H 0AH London, United Kingdom.; Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom., Joseph MD; London Centre for Nanotechnology, University College London, 19 Gordon Street, WC1H 0AH London, United Kingdom.; Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom., Cappellari MV; Centro de Investigaciones en Bionanociencias - 'Elizabeth Jares-Erijman' (CIBION), CONICET, Godoy Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina., Simoncelli S; London Centre for Nanotechnology, University College London, 19 Gordon Street, WC1H 0AH London, United Kingdom.; Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom., Aramendía PF; Centro de Investigaciones en Bionanociencias - 'Elizabeth Jares-Erijman' (CIBION), CONICET, Godoy Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina.
Jazyk: angličtina
Zdroj: Nano letters [Nano Lett] 2024 Oct 30; Vol. 24 (43), pp. 13834-13842. Date of Electronic Publication: 2024 Oct 21.
DOI: 10.1021/acs.nanolett.4c04394
Abstrakt: Current methods for determining equilibrium constants often operate in three-dimensional environments, which may not accurately reflect interactions with membrane-bound proteins. With our technique, based on single-molecule localization microscopy (SMLM), we directly determine protein-protein association ( K a ) and dissociation ( K d ) constants in cellular environments by quantifying associated and isolated molecules and their interaction area. We introduce Kernel Surface Density (ks-density,) a novel method for determining the accessible area for interacting molecules, eliminating the need for user-defined parameters. Simulation studies validate our method's accuracy across various density and affinity conditions. Applying this technique to T cell signaling proteins, we determine the 2D association constant of T cell receptors (TCRs) in resting cells and the pseudo-3D dissociation constant of pZAP70 molecules from phosphorylated intracellular tyrosine-based activation motifs on the TCR-CD3 complex. We address challenges of multiple detection and molecular labeling efficiency. This method enhances our understanding of protein interactions in cellular environments, advancing our knowledge of complex biological processes.
Databáze: MEDLINE