Metabolomic signature of sperm in men with obesity-associated asthenozoospermia.

Autor: Hou Y; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China., Wang J; School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China., Pan M; School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China., Zhou Y; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China., Wang Y; School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China., Chen J; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China., Zhong M; School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China., Li X; School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China. lixinrrii@163.com., Zhang Q; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, The People's Republic of China. zhangqi@njtech.edu.cn.
Jazyk: angličtina
Zdroj: Journal of assisted reproduction and genetics [J Assist Reprod Genet] 2024 Nov; Vol. 41 (11), pp. 3161-3171. Date of Electronic Publication: 2024 Oct 21.
DOI: 10.1007/s10815-024-03294-4
Abstrakt: Purpose: Obese men have a significantly increased risk of developing asthenozoospermia. Sperm motility is directly related to cellular energy supply and metabolic status. Sperm metabolomics research based on Gas chromatography-mass spectrometry (GC-MS) technology can provide useful information for the pathological mechanism, diagnosis, and treatment of obesity-associated asthenozoospermia.
Methods: Sperm samples were obtained from a healthy control group (n = 49) and patients with obesity-associated asthenozoospermia (n = 40). After the analysis of sperm samples using GC-MS, various multivariate statistical methods such as principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) were conducted.
Results: A total of 56 metabolites were identified in the sperm samples. Among them, 19 differential metabolites were found between the two groups. Metabolites such as glutamic acid, fumaric acid, and cysteine were significantly downregulated in the sperm of patients with obesity-associated asthenozoospermia, while metabolites like palmitic acid, stearic acid, and alanine were significantly upregulated. The differential metabolites were enriched in D-glutamine and D-glutamate metabolism; proline, aspartate, and glutamate metabolism; glutathione metabolism and the other metabolic pathways.
Conclusion: Obesity may influence the composition of metabolic products in sperm, and metabolomic analysis proves beneficial for the future diagnosis and treatment of obesity-associated asthenozoospermia.
Competing Interests: Declarations. Ethical approval: The research adhered to the principles outlined in the Declaration of Helsinki and received approval from the Ethics Committee of Nanjing Tech University and Nanjing Drum Tower Hospital (Number 2019NZZDZX-004). Informed consent: Informed consent was obtained from all participants in this study. Conflict of interest: The authors declare no conflicts of interest.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
Databáze: MEDLINE