CALIFRAME: a proposed method of calibrating reporting guidelines with FAIR principles to foster reproducibility of AI research in medicine.

Autor: Shiferaw KB; Department of Medical Informatics, Institute for Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany., Balaur I; Luxembourg Centre for Systems Biology, University of Luxembourg, Belvaux L-4367, Luxembourg., Welter D; Luxembourg National Data Service, Esch-sur-Alzette L-4362, Luxembourg., Waltemath D; Department of Medical Informatics, Institute for Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany., Zeleke AA; Department of Medical Informatics, Institute for Community Medicine, University Medicine Greifswald, Greifswald D-17475, Germany.
Jazyk: angličtina
Zdroj: JAMIA open [JAMIA Open] 2024 Oct 18; Vol. 7 (4), pp. ooae105. Date of Electronic Publication: 2024 Oct 18 (Print Publication: 2024).
DOI: 10.1093/jamiaopen/ooae105
Abstrakt: Background: Procedural and reporting guidelines are crucial in framing scientific practices and communications among researchers and the broader community. These guidelines aim to ensure transparency, reproducibility, and reliability in scientific research. Despite several methodological frameworks proposed by various initiatives to foster reproducibility, challenges such as data leakage and reproducibility remain prevalent. Recent studies have highlighted the transformative potential of incorporating the FAIR (Findable, Accessible, Interoperable, and Reusable) principles into workflows, particularly in contexts like software and machine learning model development, to promote open science.
Objective: This study aims to introduce a comprehensive framework, designed to calibrate existing reporting guidelines against the FAIR principles. The goal is to enhance reproducibility and promote open science by integrating these principles into the scientific reporting process.
Methods: We employed the "Best fit" framework synthesis approach which involves systematically reviewing and synthesizing existing frameworks and guidelines to identify best practices and gaps. We then proposed a series of defined workflows to align reporting guidelines with FAIR principles. A use case was developed to demonstrate the practical application of the framework.
Results: The integration of FAIR principles with established reporting guidelines through the framework effectively bridges the gap between FAIR metrics and traditional reporting standards. The framework provides a structured approach to enhance the findability, accessibility, interoperability, and reusability of scientific data and outputs. The use case demonstrated the practical benefits of the framework, showing improved data management and reporting practices.
Discussion: The framework addresses critical challenges in scientific research, such as data leakage and reproducibility issues. By embedding FAIR principles into reporting guidelines, the framework ensures that scientific outputs are more transparent, reliable, and reusable. This integration not only benefits researchers by improving data management practices but also enhances the overall scientific process by promoting open science and collaboration.
Conclusion: The proposed framework successfully combines FAIR principles with reporting guidelines, offering a robust solution to enhance reproducibility and open science. This framework can be applied across various contexts, including software and machine learning model development stages, to foster a more transparent and collaborative scientific environment.
Competing Interests: None declared.
(© The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association.)
Databáze: MEDLINE