Insights into the carbon and nitrogen metabolism pathways in mixed-autotrophy/heterotrophy anammox consortia in response to temperature reduction.
Autor: | Zhou L; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China., Zhang X; School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China., Zhang X; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China., Wu P; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address: wupengniu@126.com., Wang A; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Water research [Water Res] 2025 Jan 01; Vol. 268 (Pt A), pp. 122642. Date of Electronic Publication: 2024 Oct 16. |
DOI: | 10.1016/j.watres.2024.122642 |
Abstrakt: | While the multi-coupled anammox system boasts a substantial research foundation, the specific characteristics of its synergistic metabolic response to decreased temperatures, particularly within the range of 13-15 °C, remained elusive. In this study, we delve into the intricate carbon and nitrogen metabolism pathways of mixed-autotrophy/heterotrophy anammox consortia under conditions of temperature reduction. Our macrogenomic analyses reveal a compelling phenomenon: the stimulation of functional genes responsible for complete denitrification, suggesting an enhancement of this process during temperature reduction. This adaptation likely contributes to maintaining system performance amidst environmental challenges. Further metabolic functional recombination analyses highlight a dramatic shift in microbial community composition, with denitrifying MAGs (metagenome-assembled genomes) experiencing a substantial increase in abundance (up to 200 times) compared to autotrophic MAGs. This proliferation underscores the strong stimulatory effect of temperature reduction on denitrifying species. Notably, autotrophic MAGs play a pivotal role in supporting the glycolytic processes of denitrifying MAGs, underscoring the intricate interdependencies within the consortia. Moreover, metabolic variations in amino acid composition among core MAGs emerge as a crucial adaptation mechanism. These differences facilitate the preservation of enzyme activity and enhance the consortia's resilience to low temperatures. Together, these findings offer a comprehensive understanding of the microbial synergistic metabolism within mixed-autotrophy/heterotrophy anammox consortia under temperature reduction, shedding light on their metabolic flexibility and resilience in dynamic environments. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |