Autor: |
Schwab-Farrell SM; Department of Rehabilitation, Exercise, and Nutrition Sciences, University of Cincinnati, Cincinnati, Ohio, USA., Mayr R; Center for Cognition, Action, & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA., Davis TJ; Center for Cognition, Action, & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA., Riley MA; Department of Rehabilitation, Exercise, and Nutrition Sciences, University of Cincinnati, Cincinnati, Ohio, USA.; Advanced Human Performance and Neuromechanics Laboratory, University of Cincinnati Digital Futures, Cincinnati, Ohio, USA., Silva PL; Center for Cognition, Action, & Perception, Department of Psychology, University of Cincinnati, Cincinnati, Ohio, USA. |
Abstrakt: |
Individuals post-stroke commonly demonstrate alterations in motor behavior with regard to both task performance and the motor strategies used in pursuit of task goals. We evaluated whether constraining postural sway (motor strategy) during practice would affect upper-limb precision aiming performance (task performance) and postural control adaptations. Adults with stroke stood on a force plate while immersed in a virtual scene displaying an anterior target. Participants aimed to position a virtual laser pointer (via handheld device) in the target. Participants then completed practice trials involving aiming at a lateral target. For this practice session, participants were randomized to either (a) a "constraint" group wherein they received physical constraint to limit postural sway, or (b) a "no-constraint" group. Task performance and postural control were assessed before and after practice, and transfer to another upper-limb task was evaluated. After practice, both groups improved paretic upper-limb performance. For the target task, the no-constraint group showed task-sensitive changes in postural control. The constraint group showed no changes in postural control. At transfer, the constraint group increased postural sway. Constraining postural sway after stroke should be carefully considered with the recognition that postural sway arises from exploratory movements involved in the discovery of adaptable motor solutions. |