Autor: |
Deng P; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China. linchen410@scu.edu.cn., Chen L; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China. linchen410@scu.edu.cn., Li Y; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China. linchen410@scu.edu.cn., Liu BW; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China. linchen410@scu.edu.cn., Wang XL; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China. linchen410@scu.edu.cn., Wang YZ; Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China. linchen410@scu.edu.cn. |
Abstrakt: |
Both the circular economy and fire-safety of polymer plastics have become a global consensus. Herein, an integrated strategy for selectively self-recyclable, highly-transparent and fire-safe polycarbonate plastic is proposed by thermally responsive phosphonium-phosphate (DP). During its service life, DP, as a flame-retardant with good compatibility, enables polycarbonate plastic with high transparency in visible light, excellent self-extinguishing and high fire-safety. After consumption, DP, as a catalyst, triggers the selective self-recycling of DP-containing polycarbonate in mixed plastics and even in same-kind polycarbonate plastics without an external catalyst. Importantly, the oxygen-consuming mechanism at high temperature in fire accidents (>350 °C) and the double hydrogen bond catalysis mechanism at a lower temperature (180 °C) of DP are key to the life cycle management of polycarbonate from use-stage to post-consumption. This work inspires a new solution to plastic pollution by designing sustainable plastics that satisfy both service-stage and end-of-life criteria, striving towards a zero-waste circular economy. |