The signal peptide of BmNPV GP64 activates the ERAD pathway to regulate heterogeneous secretory protein expression.
Autor: | Liu N; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China., Xu Y; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China., Sun L; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China., Li M; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China., Huang J; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China.; Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, PR China., Hao B; Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, PR China. bfhao@just.edu.cn.; Key Laboratory of Genetic Improvement of Sericulture in the Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, PR China. bfhao@just.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Microbial cell factories [Microb Cell Fact] 2024 Oct 18; Vol. 23 (1), pp. 284. Date of Electronic Publication: 2024 Oct 18. |
DOI: | 10.1186/s12934-024-02534-7 |
Abstrakt: | As a powerful eukaryotic expression vector, the baculovirus expression vector system (BEVS) is widely applied to the production of heterogeneous proteins for research and pharmaceutical purposes, while optimization of BEVS remains a work in progress for membrane or secreted protein expression. In this study, the impact of the signal peptide (SP) derived from Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 protein on protein expression, secretion, and the endoplasmic reticulum-associated degradation (ERAD) pathway were investigated in BmN cells and BEVS. Transient expression studies in BmN cells revealed that SP alters the localization and expression levels of recombinant proteins, reducing intracellular accumulation while enhancing secretion efficiency. Quantitative analysis demonstrated that SP-mediated secretion was markedly higher compared to controls, albeit with lower total expression levels. Further exploration into SP-mediated ERAD pathway activation showed increased expression of BiP and other ERAD-associated genes (PDI, UFD1, S1P, and ASK1), correlating with higher SP-driven protein expression levels. RNA interference (RNAi) experiments elucidated that knockdown of ERAD-associated genes enhances both the secretion efficiency of SP-guided proteins and the infectivity of BmNPV. Particularly, interference with BiP demonstrated the most pronounced effect on protein secretion enhancement. Viral infection experiments further supported these findings, showing upregulated ERAD-associated genes during BmNPV infection, indicating their role in viral protein processing and infectivity. In conclusion, this study elucidates the complex interplay between SP-mediated protein secretion, ERAD pathway activation, and viral infectivity in BmNPV-infected cells. These insights suggest strategies for optimizing recombinant protein production and viral protein processing in baculovirus expression systems, with potential implications for biotechnological and biomedical applications. Further research could refine our understanding and manipulation of protein secretion pathways in insect cell-based expression systems. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |