Atrazine dependence in cultivated fungal communities.
Autor: | da Silva GF; Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil., Gomez JAM; Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil., Moreira JVF; Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil., Braatz GM; Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil., Bonugli-Santos RC; Federal University of Latin American Integration (UNILA), Institute Latin American of Nature and Life Sciences (ILACNV), Interdisciplinary Center of Life Sciences (CICV), JardimUniversitário, 1000 Tarquínio Joslin Dos Santos Av, Foz Do Iguaçu, PR, 85870-901, Brazil. rafaella.santos@unila.edu.br. |
---|---|
Jazyk: | angličtina |
Zdroj: | Folia microbiologica [Folia Microbiol (Praha)] 2024 Oct 16. Date of Electronic Publication: 2024 Oct 16. |
DOI: | 10.1007/s12223-024-01204-w |
Abstrakt: | The isolation and study of fungi within specific contexts yield valuable insights into the intricate relationships between fungi and ecosystems. Unlike culture-independent approaches, cultivation methods are advantageous in this context because they provide standardized replicates, specific species isolation, and easy sampling. This study aimed to understand the ecological process using a microcosm system with pesticide concentrations similar to those found in the soil, in contrast to high doses, from the isolation of the enriched community. The atrazine concentrations used were 0.02 mg/kg (control treatment), 300 ng/kg (treatment 1), and 3000 ng/kg (treatment 2), using a 28-day microcosm system. Ultimately, the isolation resulted in 561 fungi classified into 76 morphospecies. The Ascomycota phylum was prevalent, with Purpureocillium, Aspergillus, and Trichoderma being consistently isolated, denoting robust and persistent genera. Diversity analyses showed that the control microcosms displayed more distinct fungal morphospecies, suggesting the influence of atrazine on fungal communities. Treatment 2 (higher atrazine concentration) showed a structure comparable to that of the control, whereas treatment 1 (lower atrazine concentration) differed significantly, indicating that atrazine concentration impacted community variance. Higher atrazine addition subtly altered ligninolytic fungal community dynamics, implying its potential for pesticide degradation. Finally, variations in atrazine concentrations triggered diverse community responses over time, shedding light on fungal resilience and adaptive strategies against pesticides. (© 2024. Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i.) |
Databáze: | MEDLINE |
Externí odkaz: |