Identification of candidate genes related to hybrid sterility by genomic structural variation and transcriptome analyses in cattle-yak.

Autor: Wan RD; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China., Gao X; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China., Wang GW; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China., Wu SX; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China., Yang QL; Department of Veterinary Sciences, Qinghai Vocational Technical College of Animal Science and Agriculture, Xining 810016, China., Zhang YW; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China., Yang QE; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Electronic address: yangqien@nwipb.cas.cn.
Jazyk: angličtina
Zdroj: Journal of dairy science [J Dairy Sci] 2025 Jan; Vol. 108 (1), pp. 679-693. Date of Electronic Publication: 2024 Oct 15.
DOI: 10.3168/jds.2024-24770
Abstrakt: Hybrids between closely related but genetically incompatible species are often inviable or sterile. Cattle-yak, an interspecific hybrid of yak and cattle, exhibits male-specific sterility, which limits the fixation of its desired traits and prevents genetic improvement in yak through crossbreeding. Transcriptome profiles of testicular tissues have been generated in cattle, yak, and cattle-yak; however, the genetic variations underlying differential gene expression associated with hybrid sterility have yet to be elucidated. We detected differences in the cellular composition and gene expression of testes from yak and cattle-yak at 3 mo of age, 10 mo of age, and adulthood. Histological analysis revealed that the most advanced germ cells were gonocytes (prospermatogonia) at 3 mo and spermatocytes at 10 mo. Complete spermatogenesis occurred in the seminiferous tubules of adult yak, whereas only spermatogonia and a limited number of spermatocytes were detected in the testis of adult cattle-yak. Transcriptome analysis revealed 180, 6,310, and 6,112 differentially expressed genes (DEG) in yak and cattle-yak at each stage, respectively. Next, we examined the spermatogenic cell types in the backcross generation (BC1) and detected the appearance of round spermatids, indicating the partial recovery of spermatogenesis in these animals. Compared with those in cattle-yak, 272 DEG were identified in the testes of BC1 animals. Notably, we discovered that the expression of X chromosome-linked genes was upregulated in the testis of cattle-yak compared with yak, suggesting a possible abnormality in the process of meiotic sex chromosome inactivation in hybrid animals. We next screened DEG harboring structural variations (SV) and identified a list of SV genes associated with spermatogonial development, meiotic recombination, and double-strand break repair. Furthermore, we found that the SV genes ESCO2 (establishment of sister chromatid cohesion N-acetyltransferase 2) and BRDT (bromodomain testis associated) may be involved in meiotic arrest of cattle-yak spermatocytes. Overall, our research provides a valuable database for identifying structural variant loci that contribute to hybrid sterility.
(The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)
Databáze: MEDLINE