GSH responsive AuNRs@TFF nanotheranostic for NIR-II photoacoustic imaging-guided CDT/PTT synergistic cancer therapy.

Autor: Leng N; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China., Zhou Y; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China., Wen C; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.. Electronic address: wcchun@163.com., Fang Q; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China., Guo X; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China., Cai B; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China., Huang KB; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.. Electronic address: kbhuang@mailbox.gxnu.edu.cn., Liang H; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.. Electronic address: hliang@gxnu.edu.cn.
Jazyk: angličtina
Zdroj: Biomaterials advances [Biomater Adv] 2025 Jan; Vol. 166, pp. 214056. Date of Electronic Publication: 2024 Sep 27.
DOI: 10.1016/j.bioadv.2024.214056
Abstrakt: Gold nanorods (AuNRs) are important photothermal therapeutic agents; however, a single therapy does not achieve satisfactory outcomes, and the synthesis process often leads to the adsorption of cetyltrimethylammonium bromide on the surface of AuNRs, which reduces its biocompatibility. Natural polyphenols are abundant in natural plants and have good biocompatibility. The metal-polyphenol network is formed by the coordination of metal ions and polyphenols, which has good drug loading, surface adhesion, and biocompatibility. In this study, the metal-polyphenol network structure formed by a transition metal (iron) and natural polyphenol tannic acid was used to modify the surface of gold nanorods (AuNRs@TF). Additionally, the surfaces of AuNRs were modified using the targeted functional molecule mercapto folic acid (AuNRs@TFF). The constructed composite nanomaterials AuNRs@TFF has good biocompatibility and tumor targeting ability. Tannic acid‑iron degrades in the tumor microenvironment and releases iron ions that catalyze the Fenton reaction, thereby facilitating chemodynamic therapy. The good photo-thermal ability of AuNRs generate good photoacoustic signals to facilitate photoacoustic imaging mediation and enhances photothermal and chemodynamic therapy performance. This study expands on the application of AuNRs in the field of nanomedicine. The simple and effective design of AuNRs@TFF provides a strategy for the development of synergistic therapeutic agents for photothermal therapy and chemodynamic therapy.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE