Acute toxicity of salicylic acid and its derivatives on the diatom Phaeodactylum tricornutum: Physico-Biochemical and transcriptomic insights.

Autor: Zhao DS; Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China., Farooq MA; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China., Li M; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China., Chen YT; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China., Xu JM; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China., Liu XL; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China., Zhang A; Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China., Yan X; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China., Zou HX; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China. Electronic address: zjuzhx@wzu.edu.cn., Pang Q; Key Laboratory of Saline-alkali Vegetation Ecology oration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China. Electronic address: qiuying@nefu.edu.cn.
Jazyk: angličtina
Zdroj: Aquatic toxicology (Amsterdam, Netherlands) [Aquat Toxicol] 2024 Nov; Vol. 276, pp. 107116. Date of Electronic Publication: 2024 Oct 04.
DOI: 10.1016/j.aquatox.2024.107116
Abstrakt: Salicylate pollutants (SAs) poses a serious threat to marine ecosystems as emerging contaminants. However, the toxic effects of SAs on marine phytoplankton, as well as the potential mechanisms and their ecological risks linked with them, are remain largely unknown. In this study, we aimed to evaluate the toxic effects of salicylic acid (SA) and its 5-substituted derivatives (5-sSA) on the marine diatom Phaeodactylum tricornutum, as well as the potential molecular mechanism involved in the toxicity. Physiological assays conducted on P. tricornutum revealed significant changes in photosynthetic pigments, chlorophyll fluorescence parameters, and antioxidant enzyme activities. The results showed that exposure of P. tricornutum to SAs caused a significant decline in chlorophyll contents and damage to the photosystem II (PSII) core resulting in the decline of photosynthesis. Although the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced, oxidative damage occurred. Transcriptome analysis showed that a large number of differentially expresses genes (DEGs) were significantly enriched in metabolic pathways such as porphyrin metabolism, terpenoid backbone biosynthesis, and carbon fixation in photosynthetic organisms after SA and 5-BrSA treatments. In addition, key genes in transcriptomic metabolic pathways were further analyzed and validated using weighted correlation network analysis (WGCNA) and real-time fluorescence quantitative PCR (qPCR). Considering the above results, SAs mainly inhibit the processes of photosynthesis by repressing the expression of genes involved in secondary metabolite synthesis and photosynthetic carbon sequestration pathways, thus exerting toxic effects on algal cells. The results of the study will provide key data for understanding the ecological risk and toxicity mechanisms of SA pollutants.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE