Autor: |
Dayarathne LA; Department of Food and Nutrition, Pukyong National University, Busan, Republic of Korea., Ko SC; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Yim MJ; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Lee JM; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Kim JY; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Oh GW; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Kim CH; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Kim KW; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Lee DS; National Marine Biodiversity of Korea (MABIK), Seochun, Korea., Jung WK; Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan, Korea., Je JY; Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Korea. |
Abstrakt: |
Saxidomus purpurata extract (SPE) is a highly consumable seafood worldwide with known health-related benefits. However, there are no reports of its' anti-obesity effect. This study explores the potential of SPE for anti-obesity effects by modulating adipogenesis and lipolysis. SPE reduced intracellular lipid and triglyceride accumulation while increasing free glycerol release in adipocytes. SPE inhibited lipogenesis protein expressions and increased the phosphorylation of hormone-sensitive lipase and Adenosine monophosphate-activated protein kinase (AMPK) to promote lipolysis. In addition, SPE suppressed adipogenesis by downregulating protein expression of key adipogenic markers, peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1) via Wnt/β-catenin signaling. SPE augmented the heme oxygenase-1 (HO-1) expression. Thus, pharmacological intervention with Zinc protoporphyrin (ZnPP-HO-1 antagonist) was employed to validate the HO-1 role. The presence of ZnPP increased the lipid accumulation and reduced the free glycerol release. At the molecular level, adipogenic transcription factors (PPARγ, C/EBPα, and SREBP1) expressions were restored in the presence of ZnPP. GC-MS analysis revealed that SPE was comprised of several fatty acids, contributing to its anti-obesity activity. SPE is an effective nutraceutical that can be used to reduce the progression of obesity. HO-1 expression during adipogenesis might be the mechanism of action for the anti-obesity effect of SPE. |