GABAergic neuron dysregulation in a human neurodevelopmental model for major psychiatric disorders.

Autor: Guo Z, Su Y, Huang WK, Yao XS, Hong Y, Gordin A, Nguyen HN, Wen Z, Ringeling FR, Chen G, Li S, Lu L, Xia M, Zheng W, Sawa A, Chen G, Christian KM, Song H, Ming GL
Jazyk: angličtina
Zdroj: BioRxiv : the preprint server for biology [bioRxiv] 2024 Sep 23. Date of Electronic Publication: 2024 Sep 23.
DOI: 10.1101/2024.09.23.614564
Abstrakt: "GABA dysfunction" is a major hypothesis for the biological basis of schizophrenia with indirect supporting evidence from human post-mortem brain and genetic studies. Patient-derived induced pluripotent stem cells (iPSCs) have emerged as a valuable platform for modeling psychiatric disorders, and previous modeling has revealed glutamatergic synapse deficits. Whether GABAergic synapse properties are affected in patient-derived human neurons and how this impacts neuronal network activity remain poorly understood. Here we optimized a protocol to differentiate iPSCs into highly enriched ganglionic eminence-like neural progenitors and GABAergic neurons. Using a collection of iPSCs derived from patients of psychiatric disorders carrying a Disrupted-in-Schizophrenia 1 ( DISC1 ) mutation and their unaffected family member, together with respective isogenic lines, we identified mutation-dependent deficits in GABAergic synapse formation and function, a phenotype similar to that of mutant glutamatergic neurons. However, mutant glutamatergic and GABAergic neurons contribute differentially to neuronal network excitability and synchrony deficits. Finally, we showed that GABAergic synaptic transmission is also defective in neurons derived from several idiopathic schizophrenia patient iPSCs. Transcriptome analysis further showed some shared gene expression dysregulation, which is more prominent in DISC1 mutant neurons. Together, our study supports a functional GABAergic synaptic deficit in major psychiatric disorders.
Databáze: MEDLINE