Retinoic Acid Improves Vascular Endothelial Dysfunction by Inhibiting PI3K/AKT/YAP-Mediated Ferroptosis in Diabetes Mellitus.
Autor: | Zhang M; Department of Cardiology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China, Liu Y; School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China, Liu Y; Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China, Tang B; Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China, Wang H; Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China, Lu M; Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China |
---|---|
Jazyk: | angličtina |
Zdroj: | Current pharmaceutical design [Curr Pharm Des] 2024 Sep 27. Date of Electronic Publication: 2024 Sep 27. |
DOI: | 10.2174/0113816128313964240728155100 |
Abstrakt: | Background: Vascular endothelial dysfunction is the initial factor involved in cardiovascular injury in patients with diabetes. Retinoic acid is involved in improving vascular complications in patients with diabetes, but its protective mechanism is still unclear. This study aimed to evaluate the effect and mechanism of All-Trans Retinoic Acid (ATRA) on endothelial dysfunction induced by diabetes. Methods: In the present study, streptozotocin (STZ)-induced diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs) were observed, and the effects of ATRA on HG-induced endothelial dysfunction and ferroptosis were evaluated. Results: ATRA treatment improved impaired vasorelaxation in diabetic aortas in an endothelium-dependent manner, and this effect was accompanied by an increase in the NO concentration and eNOS expression. Ferroptosis, characterized by lipid peroxidation and iron overload induced by HG, was improved by ATRA administration, and a ferroptosis inhibitor (ferrostatin-1, Fer-1) improved endothelial function to a similar extent as ATRA. In addition, the inactivation of phosphoinositol-3-kinase (PI3K)/protein kinases B (AKT) and Yes-Associated Protein (YAP) nuclear localization induced by HG were reversed by ATRA administration. Vascular ring relaxation experiments showed that PI3K/AKT activation and YAP inhibition had similar effects on ferroptosis and endothelial function. However, the vasodilative effect of retinoic acid was affected by PI3K/AKT inhibition, and the inhibitory effects of ATRA on ferroptosis and the improvement of endothelial function were dependent on the retinoic acid receptor. Conclusion: ATRA could improve vascular endothelial dysfunction by inhibiting PI3K/AKT/YAP-mediated ferroptosis induced by HG, which provides a new idea for the treatment of vascular lesions in diabetes. (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.) |
Databáze: | MEDLINE |
Externí odkaz: |