Revisiting the concept, urban practices, current advances, and future prospects of green infrastructure.
Autor: | Addo-Bankas O; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China., Wei T; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain., Zhao Y; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China; School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland. Electronic address: yzhao@xaut.edu.cn., Bai X; China United Northwest Institute for Engineering Design & Research Co., Ltd., Xi'an 710077, PR China., Núñez AE; Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain., Stefanakis A; Laboratory of Environmental Engineering & Management, School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Science of the total environment [Sci Total Environ] 2024 Dec 01; Vol. 954, pp. 176473. Date of Electronic Publication: 2024 Sep 27. |
DOI: | 10.1016/j.scitotenv.2024.176473 |
Abstrakt: | The inevitable increase in the human population's reliance on natural resources necessitates practical, and result-oriented solutions and strategies to enhance human's standard of living while minimizing its impact on essential resources. The global water resource depletion has spurred discourse among key international stakeholder in uniting efforts to achieve sustainability. For decades, the application of a combination of key strategies which relies on designing cities to promote the sustainable use of water and water resources have received global endorsement. The roadmap towards designing water-wise infrastructure in urban areas has derived from preexisting water conservation schemes. Green infrastructure (GI) is based on the key principle of the harmonious integration of natural elements and ecological processes to sustainably conserve natural resources. This paper aims to analyze and assess the development of sustainable and effective solutions for urban water quality management, by providing a comprehensive review of the concept of GI. We further digest the components and strategies of GI, its historical evolution, the rate of adoption and application on a regional scale and future prospects. GI with continued innovation and refinement, holds immense potential to mitigate the detrimental effects of urbanization on water resources and promote sustainable urban water management. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |