Autor: |
Eens S; Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium.; Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium., Van Hecke M; Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium., Van den Bogaert S; Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium., Favere K; Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium.; Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium.; Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium.; Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium., Cools N; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium., Fransen E; Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2650 Antwerp, Belgium., Roskams T; Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, 3000 Leuven, Belgium., Heidbuchel H; Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium.; Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium., Guns PJ; Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium. |
Abstrakt: |
The mechanism underlying myopericarditis associated with mRNA COVID-19 vaccination, including increased susceptibility in young males, remains poorly understood. This study aims to explore the hypothesis that engaging in physical exercise at the time of mRNA COVID-19 vaccination may promote a cardiac inflammatory response, leading to the development of myopericarditis. Male BALB/c mice underwent treadmill running or remained sedentary for five weeks. Subsequently, two doses of the Pfizer/BioNTech vaccine or vehicle were administered with a 14-day interval, while the exercise regimen continued. The animals were euthanized days after the second vaccination. Vaccination was followed by body weight loss, increased hepatic inflammation, and an antigen-specific T cell response. Small foci of fibrovascular inflammation and focal cell loss were observed in the right ventricle, irrespective of vaccination and/or exercise. Vaccination did not elevate cardiac troponin levels. Cardiac tissue from the vaccinated mice showed upregulated mRNA expression of the genes IFNγ and IL-1β, but not IL-6 or TNFα. This pro-inflammatory signature in the heart was not exacerbated by endurance exercise. Ex vivo vascular reactivity remained unaffected by vaccination. Our data provide evidence for the cardiac safety of mRNA COVID-19 vaccination. The role of exercise in the development of pro-inflammatory cardiac changes post mRNA vaccination could not be established. |