Autor: |
Gudžinskaitė I; Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania., Laužikė K; Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania., Pukalskas A; Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania., Samuolienė G; Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas Str. 30, LT-54333 Babtai, Lithuania. |
Jazyk: |
angličtina |
Zdroj: |
Antioxidants (Basel, Switzerland) [Antioxidants (Basel)] 2024 Sep 03; Vol. 13 (9). Date of Electronic Publication: 2024 Sep 03. |
DOI: |
10.3390/antiox13091075 |
Abstrakt: |
Microgreens are vegetable greens that are harvested early while they are still immature and have just developed cotyledons. One of the disadvantages and a challenge in production is that they exhibit a short shelf life and may be damaged easily. In seeking to prolong the shelf life, some pre- and postharvest interventions have been investigated. Here, kale and mustard microgreens were grown in a controlled-environment walk-in chamber at +21/17 °C, with ~65% relative air humidity, while maintaining the spectral composition of deep red 61%, blue 20%, white 15%, and far red 4% (150, 200, and 250 µmol m -2 s -1 photosynthetic photon flux density (PPFD)). Both microgreens seemed to exhibit specific and species-dependent responses. Higher PPFD during growth and storage in light conditions resulted in increased contents of TPC in both microgreens on D 5 . Additionally, 150 and 250 PPFD irradiation affected the α-tocopherol content by increasing it during postharvest storage in kale. On D 0 150 for kale and 200 PPFD for mustard microgreens, β-carotene content increased. D 5 for kale showed insignificant differences, while mustard responded with the highest β-carotene content, under 150 PPFD. Our findings suggest that both microgreens show beneficial outcomes when stored in light compared to dark and that mild photostress is a promising tool for nutritional value improvement and shelf-life prolongation. |
Databáze: |
MEDLINE |
Externí odkaz: |
|