Identification of three novel linear B-cell epitopes on VP7 of African horse sickness virus using monoclonal antibodies.

Autor: Hu X; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China., Xu J; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China., Wang X; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China., Tian Z; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China., Guan G; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China., Luo J; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China., Yin H; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address: yinhong@caas.cn., Du J; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China. Electronic address: dujunzheng@caas.cn.
Jazyk: angličtina
Zdroj: Veterinary microbiology [Vet Microbiol] 2024 Nov; Vol. 298, pp. 110258. Date of Electronic Publication: 2024 Sep 23.
DOI: 10.1016/j.vetmic.2024.110258
Abstrakt: African horse sickness (AHS) is an acute and subacute infectious disease of equine species caused by the African horse sickness virus (AHSV). The VP7 of AHSV is a group-specific protein conserved in all serotypes and is an excellent candidate for the serological diagnosis and an AHS vaccine component. However, to date, B-cell epitopes on the AHSV VP7 recognized by humoral immune responses remain unclear. This study expressed the recombinant AHSV VP7 soluble in Escherichia coli and purified it for mouse immunization. Four monoclonal antibodies (mAbs) were screened and identified by hybridoma cell fusion, clonal purification, and immunological assays. The B-cell epitopes, recognized by monoclonal antibodies 4B5, 3G10, 3D7, and 4D6, were identified by a series of truncated overlapping peptides expressed as glutathione S-transferase (GST)-fusion proteins. The results revealed that 4B5 recognized the 124 VQTGRYAGA 132 motif, 3G10 recognized the 140 RYYVPQGRT 148 motif, while 3D7 and 4D6 recognized the 292 QPINPPIFP 300 motif. Amino acid sequence alignment indicated that three novel B-cell epitopes were conserved among various AHSV serotypes but unconserved in other orbiviruses, such as the bluetongue and epidemic hemorrhagic disease viruses. This study informs on the antigenic epitopes of AHSV VP7, facilitating future investigations into the serological diagnosis method and epitope-based vaccines against AHSV.
Competing Interests: Declaration of Competing Interest The authors declare no financial or other relationships that might lead to a conflict of interest. All authors approved the manuscript submission.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE