Flavor characterization of pork cuts in Chalu black pigs using multi-omics analysis.

Autor: Zhang Y; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China. Electronic address: zyy686868@163.com., Diao Y; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China., Raza SHA; Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China., Huang J; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China., Wang H; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China., Tu W; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China., Zhang J; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China., Zhou J; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China., Tan Y; Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, People's Republic of China; Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China. Electronic address: typine@163.com.
Jazyk: angličtina
Zdroj: Meat science [Meat Sci] 2025 Jan; Vol. 219, pp. 109668. Date of Electronic Publication: 2024 Sep 16.
DOI: 10.1016/j.meatsci.2024.109668
Abstrakt: The study investigated the flavor variations in four different fresh pork cuts (longissimus thoracis, LT; trapezius muscle, TM; hamstring muscle, HM; Pork Belly, PB) from Chalu black pigs (ten castrated boars) using multi-omics techniques. The research also explored the influence of muscle fiber type on the flavor profiles of these cuts. Results from quantitative real-time PCR (qRT-PCR) indicated significant differences in muscle fiber type across the four pork cuts in various anatomical locations. Each cut exhibited distinctive volatile organic compounds (VOCs) profiles, with HM displaying a sweet and fruity green flavor, LT showcasing a fatty and nutty taste, PB presenting a fresh, citrusy, and green flavor, and TM offering a floral and bitter note. Variations in fatty acid carbon number and saturation were observed among the cuts, with HM, LT, and PB being rich in fatty acids with C16-18, C19-21, and 3 double bonds, respectively. The metabolites specific to each cut were found to play key roles in different metabolic pathways, such as protein-related pathways for HM, arginine biosynthesis for LT, lysine biosynthesis for PB, and D-arginine and D-ornithine metabolism for TM. Differentially expressed genes (DEGs) were associated with amino acid metabolism for HM, glycolysis/gluconeogenesis for LT, and cellular aromatic compound organization for PB. Notably, HM and PB displayed unique flavor characteristics, while TM exhibited relatively neutral features. The study also identified correlations among VOCs, muscle fiber type, lipids, metabolites, and gene patterns specific to each cut, highlighting the complex interplay of factors influencing pork flavor.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE