Research progress of nanog gene in fish.
Autor: | Yu M; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China. miaoyu@htu.edu.cn., Wang F; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China., Gang H; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Engineering Laboratory of Henan Province for Aquatic Animal Disease Control, Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, College of Fisheries, Henan Normal University, Xinxiang, 453007, China., Liu C; School of 3D Printing, Xinxiang University, Xinxiang, 453003, China. swxlch@163.com. |
---|---|
Jazyk: | angličtina |
Zdroj: | Molecular genetics and genomics : MGG [Mol Genet Genomics] 2024 Sep 24; Vol. 299 (1), pp. 88. Date of Electronic Publication: 2024 Sep 24. |
DOI: | 10.1007/s00438-024-02182-x |
Abstrakt: | Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog. (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) |
Databáze: | MEDLINE |
Externí odkaz: |