Intra-articular injection of platinum nanozyme-loaded silk fibroin/pullulan hydrogels relieves osteoarthritis through ROS scavenging and ferroptosis suppression.

Autor: Feng J; Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China., Deng X; Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China., Hao P; Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China., Zhu Z; Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China., Li T; Center of Laboratory Medicine, Chongqing Prevention and Treatment Center for Occupational Diseases, Chongqing 400060, China., Yuan X; Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China., Hu J; Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China., Wang Y; Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China. Electronic address: Doctorwv@163.com.
Jazyk: angličtina
Zdroj: International journal of biological macromolecules [Int J Biol Macromol] 2024 Nov; Vol. 280 (Pt 2), pp. 135863. Date of Electronic Publication: 2024 Sep 21.
DOI: 10.1016/j.ijbiomac.2024.135863
Abstrakt: Reactive oxygen species (ROS)-mediated ferroptosis plays a critical role in the development of osteoarthritis (OA). Consequently, it is speculated that anti-ferroptosis agents could represent a novel therapeutic strategy for managing OA. In this study, a hydrogel incorporating platinum (Pt) nanozyme was synthesized by dispersing Pt nanoparticles (NPs) within a matrix of silk fibroin (SF) and oxidized pullulan (oxPL). This hydrogel allows for a substantial and sustained release of up to 30 days. The gelation time (from 140.3 ± 42.3 s to 460.0 ± 40.0 s), swelling capacity (from 57.7 ± 3.8 % to 24.0 ± 7.0 %), and degradation rate (from 60.3 ± 4.7 % to 32.0 ± 4.6 %) of the hydrogels can be modulated by adjusting the Pt NP content. The Pt@SF/oxPL hydrogel effectively eliminates ROS due to its catalase-like and superoxide dismutase-like enzymatic properties. In vitro studies demonstrated that Pt@SF/oxPL efficiently mitigated the process of ferroptotic cell death in chondrocytes. More critically, intra-articular administration of Pt@SF/oxPL showcased therapeutic advantages by both protecting and stimulating the regeneration of cartilage throughout the progression of OA. Collectively, this study suggests that Pt@SF/oxPL hydrogels could potentially serve as an effective treatment for OA, presenting a novel nanozyme-based therapeutic approach for this condition.
Competing Interests: Declaration of competing interest The authors declare that there is no conflict of interest.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE