Use of differential scanning calorimetry as a rapid, effective in-process check method for impurity quantitation of an early clinical batch of Giredestrant (GDC-9545).

Autor: Chakravarty P; Synthetic Molecule Pharmaceutics, Genentech, Inc., South San Francisco, CA 94080, USA., Nagapudi K; Synthetic Molecule Pharmaceutics, Genentech, Inc., South San Francisco, CA 94080, USA. Electronic address: nagapudk@gene.com.
Jazyk: angličtina
Zdroj: Journal of pharmaceutical sciences [J Pharm Sci] 2024 Nov; Vol. 113 (11), pp. 3191-3195. Date of Electronic Publication: 2024 Sep 19.
DOI: 10.1016/j.xphs.2024.09.003
Abstrakt: Giredestrant (GDC-9545) is a selective estrogen receptor degrader (SERD) that was developed for treatment of ER+/HER2- metastatic breast cancer. An anhydrous crystalline tartrate salt was identified as the solid form suitable for clinical development. An early clinical batch of the active pharmaceutical ingredient (API)/drug substance failed to pass the GMP purity specifications owing to the presence of a substantial amount of high molecular weight impurities (oligomers), as determined by size exclusion chromatography. Several trial rework batches were manufactured using various re-slurry and recrystallization conditions to purge impurities in the drug substance to adhere to purity specifications. Based on the melting point depression of the API in presence of oligomers in these rework batches, a differential scanning calorimetry method was developed to quantify impurity content as a function of melting point onset of the API. This thermal analysis method was used as a surrogate for chromatography as a rapid, effective in-process check method for impurity quantitation to enable the timely release of the final reworked clinical batch. Post release, the % w/w oligomer value determined by calorimetry was in excellent agreement to that obtained by size exclusion chromatography.
(Copyright © 2024 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE