Copper sensing transcription factor ArsR2 regulates VjbR to sustain virulence in Brucella abortus .

Autor: Zhi F; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Liu K; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Geng H; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Su M; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Xu J; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Fu L; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Ma K; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Gao P; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Yuan L; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China., Chu Y; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People's Republic of China.; Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People's Republic of China.
Jazyk: angličtina
Zdroj: Emerging microbes & infections [Emerg Microbes Infect] 2024 Dec; Vol. 13 (1), pp. 2406274. Date of Electronic Publication: 2024 Sep 25.
DOI: 10.1080/22221751.2024.2406274
Abstrakt: Brucellosis, caused by the intracellular pathogen Brucella , is a major zoonotic infection that promotes reproductive disease in domestic animals and chronic debilitating conditions in humans. The ArsR family of transcriptional regulators plays key roles in diverse cellular processes, including metal ion homeostasis, responding to adverse conditions, and virulence. However, little is known about the function of ArsR family members in Brucella . Here, we identified ArsR2 as a nonclassical member of the family that lacks autoregulatory function, but which nevertheless plays a vital role in maintaining copper homeostasis in B. abortus . ArsR2 is a global regulator of 241 genes, including those involved in the VirB type IV secretion system (T4SS). Significantly, ArsR2 regulates T4SS production in B. abortus by targeting VjbR which encodes a LuxR-type family transcriptional regulator. Moreover, copper modulates transcriptional activity of ArsR2, but not of VjbR. Furthermore, deletion of arsR2 attenuated virulence in a mouse model. Collectively, these findings enhance understanding of the mechanism by which ArsR proteins regulate virulence gene expression in pathogenic Brucella species.
Databáze: MEDLINE