Obesity-Senescence-Breast Cancer: Clinical Presentation of a Common Unfortunate Cycle.

P5’ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 24:5262–5268. https://doi.org/10.1038/sj.onc.1208760. (PMID: 10.1038/sj.onc.120876015940257)
Hiyama E, Saeki T, Hiyama K, Takashima S, Shay JW, Matsuura Y, Yokoyama T (2000) Telomerase activity as a marker of breast carcinoma in fine-needle aspirated samples. Cancer 90:235–238. (PMID: 10.1002/1097-0142(20000825)90:4<235::AID-CNCR6>3.0.CO;2-Z10966564)
Hochreiter AE, Xiao H, Goldblatt EM, Gryaznov SM, Miller KD, Badve S, Sledge GW, Herbert B-S (2006) Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 12:3184–3192. https://doi.org/10.1158/1078-0432.CCR-05-2760. (PMID: 10.1158/1078-0432.CCR-05-276016707619)
Holysz H, Lipinska N, Paszel-Jaworska A, Rubis B (2013) Telomerase as a useful target in cancer fighting-the breast cancer case. Tumour Biol 34:1371–1380. https://doi.org/10.1007/s13277-013-0757-4. (PMID: 10.1007/s13277-013-0757-423558965)
Hoos A, Hepp HH, Kaul S, Ahlert T, Bastert G, Wallwiener D (1998) Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer 79:8–12. https://doi.org/10.1002/(sici)1097-0215(19980220)79:1<8::aid-ijc2>3.0.co;2-5. (PMID: 10.1002/(sici)1097-0215(19980220)79:1<8::aid-ijc2>3.0.co;2-59495350)
Ignatov T, Treeck O, Kalinski T, Ortmann O, Ignatov A (2020) GPER-1 expression is associated with a decreased response rate to primary tamoxifen therapy of breast cancer patients. Arch Gynecol Obstet 301:565–571. https://doi.org/10.1007/s00404-019-05384-6. (PMID: 10.1007/s00404-019-05384-631900584)
Ivancich M, Schrank Z, Wojdyla L, Leviskas B, Kuckovic A, Sanjali A, Puri N (2017) Treating cancer by targeting telomeres and telomerase. Antioxidants (Basel) 6:15. https://doi.org/10.3390/antiox6010015. (PMID: 10.3390/antiox601001528218725)
Jafri MA, Ansari SA, Alqahtani MH, Shay JW (2016) Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 8:69. https://doi.org/10.1186/s13073-016-0324-x. (PMID: 10.1186/s13073-016-0324-x273239514915101)
Jaiswal RK, Yadava PK (2020) Assessment of telomerase as drug target in breast cancer. J Biosci 45:72. (PMID: 10.1007/s12038-020-00045-232515354)
Jensen EV, Jordan VC (2003) The estrogen receptor: a model for molecular medicine. Clin Cancer Res 9:1980–1989. (PMID: 12796359)
Jiang H, Yu J, Guo H, Song H, Chen S (2008) Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells. Biochem Biophys Res Commun 368:1–5. https://doi.org/10.1016/j.bbrc.2007.04.004. (PMID: 10.1016/j.bbrc.2007.04.00418242580)
Josefson D (2000) High insulin levels linked to deaths from breast cancer. BMJ 320:1496. (PMID: 108348881118103)
Judasz E, Lisiak N, Kopczyński P, Taube M, Rubiś B (2022) The role of telomerase in breast cancer’s response to therapy. Int J Mol Sci 23:12844. https://doi.org/10.3390/ijms232112844. (PMID: 10.3390/ijms232112844363616349654063)
Kammori M, Sugishita Y, Okamoto T, Kobayashi M, Yamazaki K, Yamada E, Yamada T (2015) Telomere shortening in breast cancer correlates with the pathological features of tumor progression. Oncol Rep 34:627–632. https://doi.org/10.3892/or.2015.4063. (PMID: 10.3892/or.2015.406326080929)
Kang SS, Kwon T, Kwon DY, Do SI (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274:13085–13090. https://doi.org/10.1074/jbc.274.19.13085. (PMID: 10.1074/jbc.274.19.1308510224060)
Katoh D, Nishizuka M, Osada S, Imagawa M (2016) FAD104, a regulator of adipogenesis and osteogenesis, interacts with the C-terminal region of STAT3 and represses malignant transformation of melanoma cells. Biol Pharm Bull 39:849–855. https://doi.org/10.1248/bpb.b15-01026. (PMID: 10.1248/bpb.b15-0102626948083)
Kawagoe J, Ohmichi M, Takahashi T, Ohshima C, Mabuchi S, Takahashi K, Igarashi H, Mori-Abe A, Saitoh M, Du B, Ohta T, Kimura A, Kyo S, Inoue M, Kurachi H (2003) Raloxifene inhibits estrogen-induced up-regulation of telomerase activity in a human breast cancer cell line. J Biol Chem 278:43363–43372. https://doi.org/10.1074/jbc.M304363200. (PMID: 10.1074/jbc.M30436320012917431)
Kelsey JL, Gammon MD, John EM (1993) Reproductive factors and breast cancer. Epidemiol Rev 15:36–47. https://doi.org/10.1093/oxfordjournals.epirev.a036115. (PMID: 10.1093/oxfordjournals.epirev.a0361158405211)
Khattar E, Kumar P, Liu CY, Akıncılar SC, Raju A, Lakshmanan M, Maury JJP, Qiang Y, Li S, Tan EY, Hui KM, Shi M, Loh YH, Tergaonkar V (2016) Telomerase reverse transcriptase promotes cancer cell proliferation by augmenting tRNA expression. J Clin Invest 126:4045–4060. https://doi.org/10.1172/JCI86042. (PMID: 10.1172/JCI86042276434335096818)
Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015. https://doi.org/10.1126/science.7605428. (PMID: 10.1126/science.76054287605428)
Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y, Takanabe-Mori R, Hasegawa K, Kita T, Kimura T (2010) Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol 24:1978–1987. https://doi.org/10.1210/me.2010-0054. (PMID: 10.1210/me.2010-0054207198595417392)
Kjaer TW, Faurholt-Jepsen D, Mehta KM, Christensen VB, Epel E, Lin J, Blackburn E, Wojcicki JM (2018) Shorter preschool, leukocyte telomere length is associated with obesity at age 9 in Latino children. Clin Obes 8:88–94. https://doi.org/10.1111/cob.12233. (PMID: 10.1111/cob.1223329271129)
Konnikova L, Simeone MC, Kruger MM, Kotecki M, Cochran BH (2005) Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (hTERT) expression in human cancer and primary cells. Cancer Res 65:6516–6520. https://doi.org/10.1158/0008-5472.CAN-05-0924. (PMID: 10.1158/0008-5472.CAN-05-092416061629)
Koziel JE, Herbert B-S (2015) The telomerase inhibitor imetelstat alone, and in combination with trastuzumab, decreases the cancer stem cell population and self-renewal of HER2+ breast cancer cells. Breast Cancer Res Treat 149:607–618. https://doi.org/10.1007/s10549-015-3270-1. (PMID: 10.1007/s10549-015-3270-1256275514667948)
Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98:12072–12077. https://doi.org/10.1073/pnas.211053698. (PMID: 10.1073/pnas.2110536981159301759769)
Kuhlow D, Florian S, von Figura G, Weimer S, Schulz N, Petzke KJ, Zarse K, Pfeiffer AFH, Rudolph KL, Ristow M (2010) Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging (Albany NY) 2:650–658. https://doi.org/10.18632/aging.100200. (PMID: 10.18632/aging.10020020876939)
Kulak O, Chen H, Holohan B, Wu X, He H, Borek D, Otwinowski Z, Yamaguchi K, Garofalo LA, Ma Z, Wright W, Chen C, Shay JW, Zhang X, Lum L (2015) Disruption of Wnt/β-catenin signaling and telomeric shortening are inextricable consequences of tankyrase inhibition in human cells. Mol Cell Biol 35:2425–2435. https://doi.org/10.1128/MCB.00392-15. (PMID: 10.1128/MCB.00392-15259393834475917)
Kulić A, Plavetić ND, Gamulin S, Jakić-Razumović J, Vrbanec D, Sirotković-Skerlev M (2016) Telomerase activity in breast cancer patients: association with poor prognosis and more aggressive phenotype. Med Oncol 33:23. https://doi.org/10.1007/s12032-016-0736-x. (PMID: 10.1007/s12032-016-0736-x26833480)
Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M (1999) Estrogen activates telomerase. Cancer Res 59:5917–5921. (PMID: 10606235)
Lakowa N, Trieu N, Flehmig G, Lohmann T, Schön MR, Dietrich A, Zeplin PH, Langer S, Stumvoll M, Blüher M, Klöting N (2015) Telomere length differences between subcutaneous and visceral adipose tissue in humans. Biochem Biophys Res Commun 457:426–432. https://doi.org/10.1016/j.bbrc.2014.12.122. (PMID: 10.1016/j.bbrc.2014.12.12225596130)
Laws A, Punglia RS (2023) Endocrine therapy for primary and secondary prevention after diagnosis of high-risk breast lesions or preinvasive breast cancer. J Clin Oncol 41:3092–3099. https://doi.org/10.1200/JCO.23.00455. (PMID: 10.1200/JCO.23.0045537126767)
Lee LMJ, Cao J, Deng H, Chen P, Gatalica Z, Wang Z-Y (2008) ER-alpha36, a novel variant of ER-alpha, is expressed in ER-positive and -negative human breast carcinomas. Anticancer Res 28:479–483. (PMID: 183838882610490)
Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679. https://doi.org/10.1093/jnci/djn123. (PMID: 10.1093/jnci/djn12318445819)
Li G, Zhang J, Jin K, He K, Zheng Y, Xu X, Wang H, Wang H, Li Z, Yu X, Teng X, Cao J, Teng L (2013) Estrogen receptor-α36 is involved in development of acquired tamoxifen resistance via regulating the growth status switch in breast cancer cells. Mol Oncol 7:611–624. https://doi.org/10.1016/j.molonc.2013.02.001. (PMID: 10.1016/j.molonc.2013.02.001234993245528464)
Li L, Wang Q, Lv X, Sha L, Qin H, Wang L, Li L (2015) Expression and localization of estrogen receptor in human breast cancer and its clinical significance. Cell Biochem Biophys 71:63–68. https://doi.org/10.1007/s12013-014-0163-6. (PMID: 10.1007/s12013-014-0163-625113640)
Long X, Nephew KP (2006) Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem 281:9607–9615. https://doi.org/10.1074/jbc.M510809200. (PMID: 10.1074/jbc.M51080920016459337)
Low KC, Tergaonkar V (2013) Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci 38:426–434. https://doi.org/10.1016/j.tibs.2013.07.001. (PMID: 10.1016/j.tibs.2013.07.00123932019)
Lu L, Zhang C, Zhu G, Irwin M, Risch H, Menato G, Mitidieri M, Katsaros D, Yu H (2011) Telomerase expression and telomere length in breast cancer and their associations with adjuvant treatment and disease outcome. Breast Cancer Res 13:R56. https://doi.org/10.1186/bcr2893. (PMID: 10.1186/bcr2893216453963218945)
Ma P, Ni K, Ke J, Zhang W, Feng Y, Mao Q (2018) miR-448 inhibits the epithelial-mesenchymal transition in breast cancer cells by directly targeting the E-cadherin repressor ZEB1/2. Exp Biol Med (Maywood) 243:473–480. https://doi.org/10.1177/1535370218754848. (PMID: 10.1177/153537021875484829368542)
MacNeil DE, Bensoussan HJ, Autexier C (2016) Telomerase regulation from beginning to the end. Genes (Basel) 7. https://doi.org/10.3390/genes7090064.
Madigan MP, Ziegler RG, Benichou J, Byrne C, Hoover RN (1995) Proportion of breast cancer cases in the United States explained by well-established risk factors. J Natl Cancer Inst 87:1681–1685. https://doi.org/10.1093/jnci/87.22.1681. (PMID: 10.1093/jnci/87.22.16817473816)
Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S, Tagliabue E (2009) Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15:2010–2021. https://doi.org/10.1158/1078-0432.CCR-08-1327. (PMID: 10.1158/1078-0432.CCR-08-132719276287)
Marko Ivancich LW (2014) Targeting the telomere with T-oligo, G quadruplex stabilizers, and tankyrase inhibitors. J Cancer Sci Ther 06(10). https://doi.org/10.4172/1948-5956.1000304.
Matsui-Hirai H, Hayashi T, Yamamoto S, Ina K, Maeda M, Kotani H, Iguchi A, Ignarro LJ, Hattori Y (2011) Dose-dependent modulatory effects of insulin on glucose-induced endothelial senescence in vitro and in vivo: a relationship between telomeres and nitric oxide. J Pharmacol Exp Ther 337:591–599. https://doi.org/10.1124/jpet.110.177584. (PMID: 10.1124/jpet.110.17758421357660)
Meeker AK, Hicks JL, Gabrielson E, Strauss WM, De Marzo AM, Argani P (2004) Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 164:925–935. https://doi.org/10.1016/S0002-9440(10)63180-X. (PMID: 10.1016/S0002-9440(10)63180-X149828461614707)
Mehta NK, Chang VW (2011) Secular declines in the association between obesity and mortality in the United States. Popul Dev Rev 37:435–451. https://doi.org/10.1111/j.1728-4457.2011.00429.x. (PMID: 10.1111/j.1728-4457.2011.00429.x221102573220918)
Mikkonen L, Hirvonen J, Jänne OA (2013) SUMO-1 regulates body weight and adipogenesis via PPARγ in male and female mice. Endocrinology 154:698–708. https://doi.org/10.1210/en.2012-1846. (PMID: 10.1210/en.2012-184623270804)
Miller TW, Hennessy BT, González-Angulo AM, Fox EM, Mills GB, Chen H, Higham C, García-Echeverría C, Shyr Y, Arteaga CL (2010) Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest 120:2406–2413. https://doi.org/10.1172/JCI41680. (PMID: 10.1172/JCI41680205308772898598)
Mizukoshi E, Kaneko S (2019) Telomerase-targeted cancer immunotherapy. Int J Mol Sci 20:1823. https://doi.org/10.3390/ijms20081823. (PMID: 10.3390/ijms20081823310137966515163)
Mokbel K, Ghilchik M, Williams G, Akbar N, Parris C, Newbold R (2000a) The association between telomerase activity and hormone receptor status and p53 expression in breast cancer. Int J Surg Investig 1:509–516. (PMID: 11729859)
Mokbel KM, Parris CN, Ghilchik M, Amerasinghe CN, Newbold RF (2000b) Telomerase activity and lymphovascular invasion in breast cancer. Eur J Surg Oncol 26:30–33. https://doi.org/10.1053/ejso.1999.0736. (PMID: 10.1053/ejso.1999.073610718176)
Monickaraj F, Gokulakrishnan K, Prabu P, Sathishkumar C, Anjana RM, Rajkumar JS, Mohan V, Balasubramanyam M (2012) Convergence of adipocyte hypertrophy, telomere shortening and hypoadiponectinemia in obese subjects and in patients with type 2 diabetes. Clin Biochem 45:1432–1438. https://doi.org/10.1016/j.clinbiochem.2012.07.097. (PMID: 10.1016/j.clinbiochem.2012.07.09722827962)
Morais KDS, Arcanjo DDS, de Faria Lopes GP, da Silva GG, da Mota THA, Gabriel TR, Rabello Ramos DDA, Silva FP, de Oliveira DM (2019) Long-term in vitro treatment with telomerase inhibitor MST-312 induces resistance by selecting long telomeres cells. Cell Biochem Funct 37:273–280. https://doi.org/10.1002/cbf.3398. (PMID: 10.1002/cbf.339831012504)
Morel A-P, Ginestier C, Pommier RM, Cabaud O, Ruiz E, Wicinski J, Devouassoux-Shisheboran M, Combaret V, Finetti P, Chassot C, Pinatel C, Fauvet F, Saintigny P, Thomas E, Moyret-Lalle C, Lachuer J, Despras E, Jauffret J-L, Bertucci F, Guitton J, Wierinckx A, Wang Q, Radosevic-Robin N, Penault-Llorca F, Cox DG, Hollande F, Ansieau S, Caramel J, Birnbaum D, Vigneron AM, Tissier A, Charafe-Jauffret E, Puisieux A (2017) A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat Med 23:568–578. https://doi.org/10.1038/nm.4323. (PMID: 10.1038/nm.432328394329)
Mountjoy KG, Holdaway IM, Finlay GJ (1983) Insulin receptor regulation in cultured human tumor cells. Cancer Res 43:4537–4542. (PMID: 6349794)
Moye AL, Porter KC, Cohen SB, Phan T, Zyner KG, Sasaki N, Lovrecz GO, Beck JL, Bryan TM (2015) Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat Commun 6:7643. https://doi.org/10.1038/ncomms8643. (PMID: 10.1038/ncomms864326158869)
Murillo-Ortiz B, Martínez-Garza S, Suárez García D, Castillo Valenzuela RDC, García Regalado JF, Cano Velázquez G (2017) Association between telomere length and CYP19 TTTA repetition polymorphism in healthy and breast cancer-diagnosed women. Breast Cancer (Dove Med Press) 9:21–27. https://doi.org/10.2147/BCTT.S125431. (PMID: 10.2147/BCTT.S12543128144163)
Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9:631–643. https://doi.org/10.1038/nrc2713. (PMID: 10.1038/nrc271319701242)
Nagalingam A, Siddharth S, Parida S, Muniraj N, Avtanski D, Kuppusamy P, Elsey J, Arbiser JL, Győrffy B, Sharma D (2021) Hyperleptinemia in obese state renders luminal breast cancers refractory to tamoxifen by coordinating a crosstalk between Med1, miR205 and ErbB. NPJ Breast Cancer 7:105. https://doi.org/10.1038/s41523-021-00314-9. (PMID: 10.1038/s41523-021-00314-9343897328363746)
Nahmias-Blank D, Maimon O, Meirovitz A, Sheva K, Peretz-Yablonski T, Elkin M (2023) Excess body weight and postmenopausal breast cancer: emerging molecular mechanisms and perspectives. Semin Cancer Biol 96:26–35. https://doi.org/10.1016/j.semcancer.2023.09.003. (PMID: 10.1016/j.semcancer.2023.09.00337739109)
Negrini S, De Palma R, Filaci G (2020) Anti-cancer immunotherapies. Targeting Telomerase Cancers (Basel) 12:2260. https://doi.org/10.3390/cancers12082260. (PMID: 10.3390/cancers1208226032806719)
Njajou OT, Cawthon RM, Blackburn EH, Harris TB, Li R, Sanders JL, Newman AB, Nalls M, Cummings SR, Hsueh W-C (2012) Shorter telomeres are associated with obesity and weight gain in the elderly. Int J Obes 36:1176–1179. https://doi.org/10.1038/ijo.2011.196. (PMID: 10.1038/ijo.2011.196)
Nugent CI, Lundblad V (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev 12:1073–1085. https://doi.org/10.1101/gad.12.8.1073. (PMID: 10.1101/gad.12.8.10739553037)
Oh H, Taffet GE, Youker KA, Entman ML, Overbeek PA, Michael LH, Schneider MD (2001) Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci USA 98:10308–10313. https://doi.org/10.1073/pnas.191169098. (PMID: 10.1073/pnas.1911690981151733756957)
Opdahl S, Alsaker MDK, Janszky I, Romundstad PR, Vatten LJ (2011) Joint effects of nulliparity and other breast cancer risk factors. Br J Cancer 105:731–736. https://doi.org/10.1038/bjc.2011.286. (PMID: 10.1038/bjc.2011.286218112523188938)
Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247. https://doi.org/10.1146/annurev-med-070909-182917. (PMID: 10.1146/annurev-med-070909-182917208871993656649)
Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R (1990) Elevated insulin receptor content in human breast cancer. J Clin Invest 86:1503–1510. https://doi.org/10.1172/JCI114868. (PMID: 10.1172/JCI1148682243127296896)
Pedram A, Razandi M, Levin ER (2006) Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 20:1996–2009. https://doi.org/10.1210/me.2005-0525. (PMID: 10.1210/me.2005-052516645038)
Picco V, Coste I, Giraud-Panis M-J, Renno T, Gilson E, Pagès G (2016) ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2. Oncotarget 7:46615–46627. https://doi.org/10.18632/oncotarget.10316. (PMID: 10.18632/oncotarget.10316273669505216822)
Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG (1983) “Hormonal” risk factors, “breast tissue age” and the age-incidence of breast cancer. Nature 303:767–770. https://doi.org/10.1038/303767a0. (PMID: 10.1038/303767a06866078)
Pines A (2013) Telomere length and telomerase activity in the context of menopause. Climacteric 16:629–631. https://doi.org/10.3109/13697137.2013.812603. (PMID: 10.3109/13697137.2013.81260323808382)
Plum L, Ma X, Hampel B, Balthasar N, Coppari R, Münzberg H, Shanabrough M, Burdakov D, Rother E, Janoschek R, Alber J, Belgardt BF, Koch L, Seibler J, Schwenk F, Fekete C, Suzuki A, Mak TW, Krone W, Horvath TL, Ashcroft FM, Brüning JC (2006) Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 116:1886–1901. https://doi.org/10.1172/JCI27123. (PMID: 10.1172/JCI27123167947351481658)
Poloni A, Maurizi G, Mattiucci D, Busilacchi E, Mancini S, Discepoli G, Amici A, Falconi M, Cinti S, Leoni P (2015) Biosafety evidence for human dedifferentiated adipocytes. J Cell Physiol 230:1525–1533. https://doi.org/10.1002/jcp.24898. (PMID: 10.1002/jcp.2489825641257)
Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511. https://doi.org/10.1158/0008-5472.CAN-05-0626. (PMID: 10.1158/0008-5472.CAN-05-062615994920)
Pooley KA, McGuffog L, Barrowdale D, Frost D, Ellis SD, Fineberg E, Platte R, Izatt L, Adlard J, Bardwell J, Brewer C, Cole T, Cook J, Davidson R, Donaldson A, Dorkins H, Douglas F, Eason J, Houghton C, Kennedy MJ, McCann E, Miedzybrodzka Z, Murray A, Porteous ME, Rogers MT, Side LE, Tischkowitz M, Walker L, Hodgson S, Eccles DM, Morrison PJ, Evans DG, Eeles RA, Antoniou AC, Easton DF, Dunning AM, EMBRACE (2014) Lymphocyte telomere length is long in BRCA1 and BRCA2 mutation carriers regardless of cancer-affected status. Cancer Epidemiol Biomarkers Prev 23:1018–1024. https://doi.org/10.1158/1055-9965.EPI-13-0635-T. (PMID: 10.1158/1055-9965.EPI-13-0635-T246423544266102)
Poonepalli A, Banerjee B, Ramnarayanan K, Palanisamy N, Putti TC, Hande MP (2008) Telomere-mediated genomic instability and the clinico-pathological parameters in breast cancer. Genes Chromosomes Cancer 47:1098–1109. https://doi.org/10.1002/gcc.20608. (PMID: 10.1002/gcc.2060818720522)
Poremba C, Shroyer KR, Frost M, Diallo R, Fogt F, Schäfer KL, Bürger H, Shroyer AL, Dockhorn-Dworniczak B, Boecker W (1999) Telomerase is a highly sensitive and specific molecular marker in fine-needle aspirates of breast lesions. J Clin Oncol 17:2020–2026. https://doi.org/10.1200/JCO.1999.17.7.2020. (PMID: 10.1200/JCO.1999.17.7.202010561253)
Postigo AA, Dean DC (1999) Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol Cell Biol 19:7961–7971. https://doi.org/10.1128/MCB.19.12.7961. (PMID: 10.1128/MCB.19.12.79611056752284881)
Purohit A, Newman SP, Reed MJ (2002) The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res 4:65–69. https://doi.org/10.1186/bcr425. (PMID: 10.1186/bcr42511879566138722)
Qi Nan W, Ling Z, Bing C (2015) The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications. Expert Opin Ther Targets 19:849–864. https://doi.org/10.1517/14728222.2015.1016500. (PMID: 10.1517/14728222.2015.101650025677239)
Qian Y, Shi D, Qiu J, Zhu F, Qian J, He S, Shu Y, Yin Y, Chen X (2015) ObRb downregulation increases breast cancer cell sensitivity to tamoxifen. Tumour Biol 36:6813–6821. https://doi.org/10.1007/s13277-015-3375-5. (PMID: 10.1007/s13277-015-3375-525846733)
Qu S, Wen W, Shu X-O, Chow W-H, Xiang Y-B, Wu J, Ji B-T, Rothman N, Yang G, Cai Q, Gao Y-T, Zheng W (2013) Association of leukocyte telomere length with breast cancer risk: nested case-control findings from the Shanghai Women’s Health Study. Am J Epidemiol 177:617–624. https://doi.org/10.1093/aje/kws291. (PMID: 10.1093/aje/kws291234441023657533)
Quach QH, Jung J, Kim H, Chung BH (2013) A simple, fast and highly sensitive assay for the detection of telomerase activity. Chem Commun (Camb) 49:6596–6598. https://doi.org/10.1039/c3cc42571a. (PMID: 10.1039/c3cc42571a23770610)
Rahmati-Yamchi M, Zarghami N, Rahbani M, Montazeri A (2011) Plasma leptin, hTERT gene expression, and anthropometric measures in obese and non-obese women with breast cancer. Breast Cancer (Auckl) 5:27–35. https://doi.org/10.4137/BCBCR.S6734. (PMID: 10.4137/BCBCR.S673421494399)
Rasha F, Sharma M, Pruitt K (2021) Mechanisms of endocrine therapy resistance in breast cancer. Mol Cell Endocrinol 532:111322. https://doi.org/10.1016/j.mce.2021.111322. (PMID: 10.1016/j.mce.2021.11132234000350)
Recagni M, Bidzinska J, Zaffaroni N, Folini M (2020) The role of alternative lengthening of telomeres mechanism in cancer: translational and therapeutic implications. Cancers (Basel) 12:949. https://doi.org/10.3390/cancers12040949. (PMID: 10.3390/cancers12040949322904407226354)
Relitti N, Saraswati AP, Federico S, Khan T, Brindisi M, Zisterer D, Brogi S, Gemma S, Butini S, Campiani G (2020) Telomerase-based cancer therapeutics: a review on their clinical trials. Curr Top Med Chem 20:433–457. https://doi.org/10.2174/1568026620666200102104930. (PMID: 10.2174/156802662066620010210493031894749)
Ren H, Zhao T, Wang X, Gao C, Wang J, Yu M, Hao J (2010) Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells. Biochem Biophys Res Commun 394:59–63. https://doi.org/10.1016/j.bbrc.2010.02.093. (PMID: 10.1016/j.bbrc.2010.02.09320171193)
Rios Garcia M, Steinbauer B, Srivastava K, Singhal M, Mattijssen F, Maida A, Christian S, Hess-Stumpp H, Augustin HG, Müller-Decker K, Nawroth PP, Herzig S, Berriel Diaz M (2017) Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab 26:842–855.e5. https://doi.org/10.1016/j.cmet.2017.09.018. (PMID: 10.1016/j.cmet.2017.09.01829056512)
Riou JF, Guittat L, Mailliet P, Laoui A, Renou E, Petitgenet O, Mégnin-Chanet F, Hélène C, Mergny JL (2002) Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc Natl Acad Sci USA 99:2672–2677. https://doi.org/10.1073/pnas.052698099. (PMID: 10.1073/pnas.05269809911854467122406)
Rizza W, Veronese N, Fontana L (2014) What are the roles of calorie restriction and diet quality in promoting healthy longevity? Ageing Res Rev 13:38–45. https://doi.org/10.1016/j.arr.2013.11.002. (PMID: 10.1016/j.arr.2013.11.00224291541)
Rode L, Nordestgaard BG, Weischer M, Bojesen SE (2014) Increased body mass index, elevated C-reactive protein, and short telomere length. J Clin Endocrinol Metab 99:E1671–E1675. https://doi.org/10.1210/jc.2014-1161. (PMID: 10.1210/jc.2014-116124762112)
Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556. https://doi.org/10.1083/jcb.201009094. (PMID: 10.1083/jcb.201009094213210983044123)
Roth LW, Polotsky AJ (2012) Can we live longer by eating less? A review of caloric restriction and longevity. Maturitas 71:315–319. https://doi.org/10.1016/j.maturitas.2011.12.017. (PMID: 10.1016/j.maturitas.2011.12.01722281163)
Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, Fallowfield L, Fowble B, Ingle JN, Jahanzeb M, Johnston SRD, Korde LA, Khatcheressian JL, Mehta RS, Muss HB, Burstein HJ (2016) Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology guideline. J Clin Oncol 34:3069–3103. https://doi.org/10.1200/JCO.2016.67.1487. (PMID: 10.1200/JCO.2016.67.148727217461)
Sahu M, Anamthathmakula P, Sahu A (2015) Phosphodiesterase-3B-cAMP pathway of leptin signalling in the hypothalamus is impaired during the development of diet-induced obesity in FVB/N mice. J Neuroendocrinol 27:293–302. https://doi.org/10.1111/jne.12266. (PMID: 10.1111/jne.1226625702569)
Sanyal S, Mondal P, Sen S, Sengupta Bandyopadhyay S, Das C (2020) SUMO E3 ligase CBX4 regulates hTERT-mediated transcription of CDH1 and promotes breast cancer cell migration and invasion. Biochem J 477:3803–3818. https://doi.org/10.1042/BCJ20200359. (PMID: 10.1042/BCJ2020035932926159)
Saretzki G, Von Zglinicki T (2002) Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 959:24–29. https://doi.org/10.1111/j.1749-6632.2002.tb02079.x. (PMID: 10.1111/j.1749-6632.2002.tb02079.x11976182)
Sasano H, Suzuki T, Nakata T, Moriya T (2006) New development in intracrinology of breast carcinoma. Breast Cancer 13:129–136. https://doi.org/10.2325/jbcs.13.129. (PMID: 10.2325/jbcs.13.12916755106)
Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M (2008) Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198:347–353. https://doi.org/10.1016/j.atherosclerosis.2007.09.040. (PMID: 10.1016/j.atherosclerosis.2007.09.04017983621)
Schosserer M, Grillari J, Wolfrum C, Scheideler M (2018) Age-induced changes in white, brite, and brown adipose depots: a mini-review. Gerontology 64:229–236. https://doi.org/10.1159/000485183. (PMID: 10.1159/00048518329212073)
Schrank Z, Khan N, Osude C, Singh S, Miller RJ, Merrick C, Mabel A, Kuckovic A, Puri N (2018) Oligonucleotides targeting telomeres and telomerase in cancer. Molecules 23:2267. https://doi.org/10.3390/molecules23092267. (PMID: 10.3390/molecules23092267301896616225148)
Seger YR, García-Cao M, Piccinin S, Cunsolo CL, Doglioni C, Blasco MA, Hannon GJ, Maestro R (2002) Transformation of normal human cells in the absence of telomerase activation. Cancer Cell 2:401–413. https://doi.org/10.1016/s1535-6108(02)00183-6. (PMID: 10.1016/s1535-6108(02)00183-612450795)
Sehl ME, Henry JE, Storniolo AM, Horvath S, Ganz PA (2022) The impact of reproductive factors on DNA methylation-based telomere length in healthy breast tissue. NPJ Breast Cancer 8:48. https://doi.org/10.1038/s41523-022-00410-4. (PMID: 10.1038/s41523-022-00410-4354181239007943)
Sekido R, Takagi T, Okanami M, Moribe H, Yamamura M, Higashi Y, Kondoh H (1996) Organization of the gene encoding transcriptional repressor deltaEF1 and cross-species conservation of its domains. Gene 173:227–232. https://doi.org/10.1016/0378-1119(96)00185-0. (PMID: 10.1016/0378-1119(96)00185-08964504)
Shah NG, Choksi TJ, Patel DD, Vora HH, Ghosh N, Trivedi TI, Trivedi KA (2002) Telomerase activity in breast cancer in Western India (Gujarat). Int J Biol Markers 17:49–55. https://doi.org/10.1177/172460080201700106. (PMID: 10.1177/17246008020170010611936586)
Sharma VK, Savitha S, Vinod KV, Rajappa M, Subramanian SK, Rajendran R (2019) Assessment of autonomic functions and its association with telomerase level, oxidative stress and inflammation in complete glycemic spectrum—an exploratory study. Diabetes Metab Syndr 13:1193–1199. https://doi.org/10.1016/j.dsx.2019.01.011. (PMID: 10.1016/j.dsx.2019.01.01131336464)
Shaw LE, Sadler AJ, Pugazhendhi D, Darbre PD (2006) Changes in oestrogen receptor-alpha and -beta during progression to acquired resistance to tamoxifen and fulvestrant (Faslodex, ICI 182,780) in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 99:19–32. https://doi.org/10.1016/j.jsbmb.2005.11.005. (PMID: 10.1016/j.jsbmb.2005.11.00516533599)
Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791. https://doi.org/10.1016/S0959-8049(97)00062-2. (PMID: 10.1016/S0959-8049(97)00062-29282118)
Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584:3819–3825. https://doi.org/10.1016/j.febslet.2010.05.026. (PMID: 10.1016/j.febslet.2010.05.026204938573370416)
Shin Y-A, Lee K-Y (2016) Low estrogen levels and obesity are associated with shorter telomere lengths in pre- and postmenopausal women. J Exerc Rehabil 12:238–246. https://doi.org/10.12965/jer.1632584.292. (PMID: 10.12965/jer.1632584.292274191214934970)
Simone V, D’Avenia M, Argentiero A, Felici C, Rizzo FM, De Pergola G, Silvestris F (2016) Obesity and breast cancer: molecular interconnections and potential clinical applications. Oncologist 21:404–417. https://doi.org/10.1634/theoncologist.2015-0351. (PMID: 10.1634/theoncologist.2015-0351268655874828118)
Soltysik K, Czekaj P (2013) Membrane estrogen receptors—is it an alternative way of estrogen action? J Physiol Pharmacol 64:129–142. (PMID: 23756388)
Song J-Y, Kim M-J, Jo H-H, Hwang S-J, Chae B, Chung J-E, Kwon D-J, Lew Y-O, Lim Y-T, Kim J-H, Kim J-H, Kim M-R (2009) Antioxidant effect of estrogen on bovine aortic endothelial cells. J Steroid Biochem Mol Biol 117:74–80. https://doi.org/10.1016/j.jsbmb.2009.07.006. (PMID: 10.1016/j.jsbmb.2009.07.00619635556)
Sun W, Gu C, Xia M, Zhong G, Song H, Guo J (2014) Significance of estrogen receptor subtypes in breast tumorigenesis and progression. Tumour Biol 35:9111–9117. https://doi.org/10.1007/s13277-014-2152-1. (PMID: 10.1007/s13277-014-2152-125027393)
Tamura Y, Takubo K, Aida J, Araki A, Ito H (2016) Telomere attrition and diabetes mellitus. Geriatr Gerontol Int 16(Suppl 1):66–74. https://doi.org/10.1111/ggi.12738. (PMID: 10.1111/ggi.1273827018285)
Thorvaldsdottir B, Aradottir M, Stefansson OA, Bodvarsdottir SK, Eyfjörd JE (2017) Telomere length is predictive of breast cancer risk in BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 26:1248–1254. https://doi.org/10.1158/1055-9965.EPI-16-0946. (PMID: 10.1158/1055-9965.EPI-16-094628235830)
Uziel O, Beery E, Dronichev V, Samocha K, Gryaznov S, Weiss L, Slavin S, Kushnir M, Nordenberg Y, Rabinowitz C, Rinkevich B, Zehavi T, Lahav M (2010) Telomere shortening sensitizes cancer cells to selected cytotoxic agents: in vitro and in vivo studies and putative mechanisms. PLoS One 5:e9132. https://doi.org/10.1371/journal.pone.0009132. (PMID: 10.1371/journal.pone.0009132201617522817744)
Uziel O, Yerushalmi R, Zuriano L, Naser S, Beery E, Nordenberg J, Lubin I, Adel Y, Shepshelovich D, Yavin H, Ben Aharon I, Pery S, Rizel S, Pasmanik-Chor M, Frumkin D, Lahav M (2016) BRCA1/2 mutations perturb telomere biology: characterization of structural and functional abnormalities in vitro and in vivo. Oncotarget 7:2433–2454. https://doi.org/10.18632/oncotarget.5693. (PMID: 10.18632/oncotarget.569326515461)
van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413. https://doi.org/10.1016/s0092-8674(00)80932-0. (PMID: 10.1016/s0092-8674(00)80932-09476899)
Vasto S, Barera A, Rizzo C, Di Carlo M, Caruso C, Panotopoulos G (2014) Mediterranean diet and longevity: an example of nutraceuticals? Curr Vasc Pharmacol 12:735–738. https://doi.org/10.2174/1570161111666131219111818. (PMID: 10.2174/157016111166613121911181824350926)
Vidacek NŠ, Nanic L, Ravlic S, Sopta M, Geric M, Gajski G, Garaj-Vrhovac V, Rubelj I (2017) Telomeres, nutrition, and longevity: can we really navigate our aging? J Gerontol A Biol Sci Med Sci 73:39–47. https://doi.org/10.1093/gerona/glx082. (PMID: 10.1093/gerona/glx08228510637)
von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. https://doi.org/10.1016/s0968-0004(02)02110-2. (PMID: 10.1016/s0968-0004(02)02110-2)
Wang Z-Y, Yin L (2015) Estrogen receptor alpha-36 (ER-α36): a new player in human breast cancer. Mol Cell Endocrinol 418(Pt 3):193–206. https://doi.org/10.1016/j.mce.2015.04.017. (PMID: 10.1016/j.mce.2015.04.01725917453)
Wang Z, Kyo S, Maida Y, Takakura M, Tanaka M, Yatabe N, Kanaya T, Nakamura M, Koike K, Hisamoto K, Ohmichi M, Inoue M (2002) Tamoxifen regulates human telomerase reverse transcriptase (hTERT) gene expression differently in breast and endometrial cancer cells. Oncogene 21:3517–3524. https://doi.org/10.1038/sj.onc.1205463. (PMID: 10.1038/sj.onc.120546312032853)
Wang L, Fan J, Yan C-Y, Ling R, Yun J (2017) Activation of hypoxia-inducible factor-1α by prolonged in vivo hyperinsulinemia treatment potentiates cancerous progression in estrogen receptor-positive breast cancer cells. Biochem Biophys Res Commun 491:545–551. https://doi.org/10.1016/j.bbrc.2017.03.128. (PMID: 10.1016/j.bbrc.2017.03.12828351619)
Weischer M, Nordestgaard BG, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A, Bojesen SE (2013) Short telomere length, cancer survival, and cancer risk in 47102 individuals. J Natl Cancer Inst 105:459–468. https://doi.org/10.1093/jnci/djt016. (PMID: 10.1093/jnci/djt01623468462)
Wong CM, Yung LM, Leung FP, Tsang S-Y, Au CL, Chen Z-Y, Yao X, Cheng CHK, Lau C-W, Gollasch M, Huang Y (2008) Raloxifene protects endothelial cell function against oxidative stress. Br J Pharmacol 155:326–334. https://doi.org/10.1038/bjp.2008.262. (PMID: 10.1038/bjp.2008.262185744542567878)
Xu Y, Goldkorn A (2016) Telomere and telomerase therapeutics in cancer. Genes (Basel) 7:22. https://doi.org/10.3390/genes7060022. (PMID: 10.3390/genes706002227240403)
Xu Z, Zhao D, Zheng X, Huang B, Pan X, Xia X (2022) Low concentrations of 17β-estradiol exacerbate tamoxifen resistance in breast cancer treatment through membrane estrogen receptor-mediated signaling pathways. Environ Toxicol 37:514–526. https://doi.org/10.1002/tox.23417. (PMID: 10.1002/tox.2341734821461)
Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, Gaudet M, Schmidt MK, Broeks A, Cox A, Fasching PA, Hein R, Spurdle AB, Blows F, Driver K, Flesch-Janys D, Heinz J, Sinn P, Vrieling A, Heikkinen T, Aittomäki K, Heikkilä P, Blomqvist C, Lissowska J, Peplonska B, Chanock S, Figueroa J, Brinton L, Hall P, Czene K, Humphreys K, Darabi H, Liu J, Van’t Veer LJ, van Leeuwen FE, Andrulis IL, Glendon G, Knight JA, Mulligan AM, O’Malley FP, Weerasooriya N, John EM, Beckmann MW, Hartmann A, Weihbrecht SB, Wachter DL, Jud SM, Loehberg CR, Baglietto L, English DR, Giles GG, McLean CA, Severi G, Lambrechts D, Vandorpe T, Weltens C, Paridaens R, Smeets A, Neven P, Wildiers H, Wang X, Olson JE, Cafourek V, Fredericksen Z, Kosel M, Vachon C, Cramp HE, Connley D, Cross SS, Balasubramanian SP, Reed MWR, Dörk T, Bremer M, Meyer A, Karstens JH, Ay A, Park-Simon T-W, Hillemanns P, Arias Pérez JI, Menéndez Rodríguez P, Zamora P, Benítez J, Ko Y-D, Fischer H-P, Hamann U, Pesch B, Brüning T, Justenhoven C, Brauch H, Eccles DM, Tapper WJ, Gerty SM, Sawyer EJ, Tomlinson IP, Jones A, Kerin M, Miller N, McInerney N, Anton-Culver H, Ziogas A, Shen C-Y, Hsiung C-N, Wu P-E, Yang S-L, Yu J-C, Chen S-T, Hsu G-C, Haiman CA, Henderson BE, Le Marchand L, Kolonel LN, Lindblom A, Margolin S, Jakubowska A, Lubiński J, Huzarski T, Byrski T, Górski B, Gronwald J, Hooning MJ, Hollestelle A, van den Ouweland AMW, Jager A, Kriege M, Tilanus-Linthorst MMA, Collée M, Wang-Gohrke S, Pylkäs K, Jukkola-Vuorinen A, Mononen K, Grip M, Hirvikoski P, Winqvist R, Mannermaa A, Kosma V-M, Kauppinen J, Kataja V, Auvinen P, Soini Y, Sironen R, Bojesen SE, Ørsted DD, Kaur-Knudsen D, Flyger H, Nordestgaard BG, Holland H, Chenevix-Trench G, Manoukian S, Barile M, Radice P, Hankinson SE, Hunter DJ, Tamimi R, Sangrajrang S, Brennan P, McKay J, Odefrey F, Gaborieau V, Devilee P, Huijts PEA, Tollenaar RAEM, Seynaeve C, Dite GS, Apicella C, Hopper JL, Hammet F, Tsimiklis H, Smith LD, Southey MC, Humphreys MK, Easton D, Pharoah P, Sherman ME, Garcia-Closas M (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 103:250–263. https://doi.org/10.1093/jnci/djq526. (PMID: 10.1093/jnci/djq52621191117)
Yang M, Jiang P, Jin C, Wang J (2017) Longer telomere length and its association with lower levels of C-peptide. Front Endocrinol (Lausanne) 8:244. https://doi.org/10.3389/fendo.2017.00244. (PMID: 10.3389/fendo.2017.0024428959237)
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W (2023) Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 21:218. https://doi.org/10.1186/s12964-023-01244-8. (PMID: 10.1186/s12964-023-01244-83761272110463831)
Yeh W-L, Shioda K, Coser KR, Rivizzigno D, McSweeney KR, Shioda T (2013) Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor α protein in MCF-7 cells require the CSK c-Src tyrosine kinase. PLoS One 8:e60889. https://doi.org/10.1371/journal.pone.0060889. (PMID: 10.1371/journal.pone.0060889235933423617152)
Yin N, Wang D, Zhang H, Yi X, Sun X, Shi B, Wu H, Wu G, Wang X, Shang Y (2004) Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res 64:5870–5875. https://doi.org/10.1158/0008-5472.CAN-04-0655. (PMID: 10.1158/0008-5472.CAN-04-065515313931)
Yu P, Shen X, Yang W, Zhang Y, Liu C, Huang T (2018) ZEB1 stimulates breast cancer growth by up-regulating hTERT expression. Biochem Biophys Res Commun 495:2505–2511. https://doi.org/10.1016/j.bbrc.2017.12.139. (PMID: 10.1016/j.bbrc.2017.12.13929288666)
Zeng J-S, Zhang Z-D, Pei L, Bai Z-Z, Yang Y, Yang H, Tian Q-H (2018) CBX4 exhibits oncogenic activities in breast cancer via Notch1 signaling. Int J Biochem Cell Biol 95:1–8. https://doi.org/10.1016/j.biocel.2017.12.006. (PMID: 10.1016/j.biocel.2017.12.00629229426)
Zhang XT, Kang LG, Ding L, Vranic S, Gatalica Z, Wang Z-Y (2011) A positive feedback loop of ER-α36/EGFR promotes malignant growth of ER-negative breast cancer cells. Oncogene 30:770–780. https://doi.org/10.1038/onc.2010.458. (PMID: 10.1038/onc.2010.45820935677)
Zhang X-T, Ding L, Kang L-G, Wang Z-Y (2012) Involvement of ER-α36, Src, EGFR and STAT5 in the biphasic estrogen signaling of ER-negative breast cancer cells. Oncol Rep 27:2057–2065. https://doi.org/10.3892/or.2012.1722. (PMID: 10.3892/or.2012.172222426783)
Zhang C, Wang H-J, Bao Q-C, Wang L, Guo T-K, Chen W-L, Xu L-L, Zhou H-S, Bian J-L, Yang Y-R, Sun H-P, Xu X-L, You Q-D (2016) NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 7:73593–73606. https://doi.org/10.18632/oncotarget.12435. (PMID: 10.18632/oncotarget.12435277131545342001) -->
Contributed Indexing: Keywords: Aromatase inhibitor; Breast cancer; Cytotoxic T cell; Epithelial-to-mesenchymal transition; Estrogen receptor; Fulvestrant; Human telomerase reverse transcriptase (hTERT); Imetelstat; Lipotoxicity; Oxidative stress; Selective estrogen receptor down-regulator; Selective estrogen receptor modulator; Senescence-associated secretory phenotype (SASP); Senescence-associated β galactosidase; Telomerase; Telomerase reactivation concept; Telomere attrition; Telomere length; Telomeric RNA component
Substance Nomenclature: EC 2.7.7.49 (Telomerase)
0 (Leptin)
Entry Date(s): Date Created: 20240917 Date Completed: 20240917 Latest Revision: 20241126
Update Code: 20241202
DOI: 10.1007/978-3-031-63657-8_27
PMID: 39287873
Autor: Engin AB; Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey. abengin@gmail.com., Engin A; Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.; Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
Jazyk: angličtina
Zdroj: Advances in experimental medicine and biology [Adv Exp Med Biol] 2024; Vol. 1460, pp. 821-850.
DOI: 10.1007/978-3-031-63657-8_27
Abstrakt: There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.
(© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.)
Databáze: MEDLINE