Stoichiometric reconstruction of the Al 2 O 3 (0001) surface.

Autor: Hütner JI; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria., Conti A; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria., Kugler D; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria., Mittendorfer F; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria., Kresse G; Faculty of Physics, University of Vienna, 1090 Vienna, Austria., Schmid M; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria., Diebold U; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria., Balajka J; Institute of Applied Physics, TU Wien, 1040 Vienna, Austria.
Jazyk: angličtina
Zdroj: Science (New York, N.Y.) [Science] 2024 Sep 13; Vol. 385 (6714), pp. 1241-1244. Date of Electronic Publication: 2024 Sep 12.
DOI: 10.1126/science.adq4744
Abstrakt: Macroscopic properties of materials stem from fundamental atomic-scale details, yet for insulators, resolving surface structures remains a challenge. We imaged the basal (0001) plane of α-aluminum oxide (α-Al 2 O 3 ) using noncontact atomic force microscopy with an atomically defined tip apex. The surface formed a complex ([Formula: see text] × [Formula: see text]) R ±9° reconstruction. The lateral positions of the individual oxygen and aluminum surface atoms come directly from experiment; we determined with computational modeling how these connect to the underlying crystal bulk. Before the restructuring, the surface Al atoms assume an unfavorable, threefold planar coordination; the reconstruction allows a rehybridization with subsurface O that leads to a substantial energy gain. The reconstructed surface remains stoichiometric, Al 2 O 3 .
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje