RNF39 facilitates antiviral immune responses by promoting K63-linked ubiquitination of STING.

Autor: Wang W; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China., Li Q; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Jia M; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Wang C; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Liang W; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Liu Y; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Kong H; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Qin Y; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Zhao C; Department of Cell Biology, School of Basic Medical Science, Shandong University, Jinan, Shandong, 250012, China., Zhao W; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China., Song H; Department of Pathogenic Biology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China. Electronic address: songhui0520@sdu.edu.cn.
Jazyk: angličtina
Zdroj: International immunopharmacology [Int Immunopharmacol] 2024 Dec 05; Vol. 142 (Pt A), pp. 113091. Date of Electronic Publication: 2024 Sep 09.
DOI: 10.1016/j.intimp.2024.113091
Abstrakt: The cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-dependent pathway is a key DNA-sensing pathway that recognizes cytosolic DNA and plays a crucial role in initiating innate immune responses against pathogenic microbes and cancer. Various molecules have been identified as regulators of the cGAS-dependent pathway that controls innate immune responses. However, despite the important roles of Stimulator-of-interferon genes (STING) in the cGAS-dependent pathway, the regulation of its activation has not been elucidated. Here, we show that the E3 ubiquitin ligase, RING finger protein 39 (RNF39), interacts with STING in macrophages and HERK293T cells. Moreover, RNF39 accelerates DNA-sensing pathways by promoting lysine (K)63-linked ubiquitination of STING, and then facilitating the formation of STING-TBK1 complex. Concordantly, Rnf39 deficiency inhibits innate immune responses triggered by DNA viral infection and accelerates viral replication. Furthermore, herpes simplex virus-1 (HSV-1) infection induces RNF39 expression in an IFN-I-dependent manner. Thus, we outline a novel mechanism for controlling STING activation and a feedback mechanism for controlling antiviral immune responses. RNF39 could be a priming intervention target for the prevention and treatment of viral diseases, especially DNA viral infections.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE