Expanding Our Horizons: AIE Materials in Bacterial Research.

Autor: Lee MMS; Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China., Yu EY; Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China., Chau JHC; Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China., Lam JWY; Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China., Kwok RTK; Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China., Tang BZ; Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
Jazyk: angličtina
Zdroj: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Sep 09, pp. e2407707. Date of Electronic Publication: 2024 Sep 09.
DOI: 10.1002/adma.202407707
Abstrakt: Bacteria share a longstanding and complex relationship with humans, playing a role in protecting gut health and sustaining the ecosystem to cause infectious diseases and antibiotic resistance. Luminogenic materials that share aggregation-induced emission (AIE) characteristics have emerged as a versatile toolbox for bacterial studies through fluorescence visualization. Numerous research efforts highlight the superiority of AIE materials in this field. Recent advances in AIE materials in bacterial studies are categorized into four areas: understanding bacterial interactions, antibacterial strategies, diverse applications, and synergistic applications with bacteria. Initial research focuses on visualizing the unseen bacteria and progresses into developing strategies involving electrostatic interactions, amphiphilic AIE luminogens (AIEgens), and various AIE materials to enhance bacterial affinity. Recent progress in antibacterial strategies includes using photodynamic and photothermal therapies, bacterial toxicity studies, and combined therapies. Diverse applications from environmental disinfection to disease treatment, utilizing AIE materials in antibacterial coatings, bacterial sensors, wound healing materials, etc., are also provided. Finally, synergistic applications combining AIE materials with bacteria to achieve enhanced outcomes are explored. This review summarizes the developmental trend of AIE materials in bacterial studies and is expected to provide future research directions in advancing bacterial methodologies.
(© 2024 Wiley‐VCH GmbH.)
Databáze: MEDLINE