Assessment of bacterial biotransformation of alkylnaphthalene lubricating base oil component 1-butylnaphthalene by LC/ESI-MS(/MS).
Autor: | Sakai M; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan. Electronic address: n235352f@yokohama-cu.ac.jp., Mori JF; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan. Electronic address: morij@yokohama-cu.ac.jp., Kanaly RA; Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama, 236-0027, Japan. Electronic address: kanaly@yokohama-cu.ac.jp. |
---|---|
Jazyk: | angličtina |
Zdroj: | Chemosphere [Chemosphere] 2024 Sep; Vol. 364, pp. 143269. Date of Electronic Publication: 2024 Sep 04. |
DOI: | 10.1016/j.chemosphere.2024.143269 |
Abstrakt: | Alkylnaphthalene lubricating oils are synthetic Group V base oils that are utilized in wide-ranging industrial applications and which are composed of polyalkyl chain-alkylated naphthalenes. Identification of alkylnaphthalene biotransformation products and determination of their mass spectrometry (MS) fragmentation signatures provides valuable information for predicting their environmental fates and for development of analytical methods to monitor their biodegradation. In this work, laboratory-based environmental petroleomics was applied to investigate the catabolism of the alkylnaphthalene, 1-butylnaphthalene (1-BN), by liquid chromatography electrospray ionization MS data mapping and targeted collision-induced dissociation (CID) analyses. Comparative mapping revealed that numerous catabolites were produced from soil bacterium, Sphingobium barthaii KK22. Targeted CID showed unique patterns of production of even-valued deprotonated fragments that were found to originate from specific classes of bacterial catabolites. Based upon results of CID analyses of catabolites and authentic standards, MS signatures were proposed to occur through formation of distonic radical anions from bacterially-produced alkylphenol biotransformation products. Finally, spectra interpretation was guided by CID results to propose chemical structures for twenty-two 1-BN catabolites resulting in construction of 1-BN biotransformation pathways. Multiple pathways were identified that included aromatic ring-opening, alkyl chain-shortening and production of α,β-unsaturated aldehydes from alkylated phenols. Until now, α,β-unsaturated aldehydes have not been a class of compounds much reported from alkylated polycyclic aromatic hydrocarbon (APAH) and PAH biotransformation. This work provides a new understanding of alkylnaphthalene biotransformation and proposes MS markers applicable to monitoring APAH biotransformation in the form of alkylated phenols, and by extension, α,β-unsaturated aldehydes, and toxic potential during spilled oil biodegradation. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2024 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |