Development and validation of a machine learning-based approach to identify high-risk diabetic cardiomyopathy phenotype.

Autor: Segar MW; Department of Cardiology, Texas Heart Institute, Houston, TX, USA., Usman MS; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA., Patel KV; Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA., Khan MS; Department of Cardiology, Duke University, Durham, NC, USA., Butler J; Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.; Baylor Scott and White Research Institute, Baylor Scott and White Health System, Dallas, TX, USA., Manjunath L; Department of Cardiology, Baylor Scott & White Medical Center, Dallas, TX, USA., Lam CSP; National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore., Verma S; St Michael's Hospital, University of Toronto, Toronto, ON, Canada., Willett D; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA., Kao D; Division of Cardiology, Department of Internal Medicine, University of Colorado School of Medicine, Denver, CO, USA., Januzzi JL; Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research, Boston, MA, USA., Pandey A; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Jazyk: angličtina
Zdroj: European journal of heart failure [Eur J Heart Fail] 2024 Oct; Vol. 26 (10), pp. 2183-2192. Date of Electronic Publication: 2024 Sep 06.
DOI: 10.1002/ejhf.3443
Abstrakt: Aims: Abnormalities in specific echocardiographic parameters and cardiac biomarkers have been reported among individuals with diabetes. However, a comprehensive characterization of diabetic cardiomyopathy (DbCM), a subclinical stage of myocardial abnormalities that precede the development of clinical heart failure (HF), is lacking. In this study, we developed and validated a machine learning-based clustering approach to identify the high-risk DbCM phenotype based on echocardiographic and cardiac biomarker parameters.
Methods and Results: Among individuals with diabetes from the Atherosclerosis Risk in Communities (ARIC) cohort who were free of cardiovascular disease and other potential aetiologies of cardiomyopathy (training, n = 1199), unsupervised hierarchical clustering was performed using echocardiographic parameters and cardiac biomarkers of neurohormonal stress and chronic myocardial injury (total 25 variables). The high-risk DbCM phenotype was identified based on the incidence of HF on follow-up. A deep neural network (DeepNN) classifier was developed to predict DbCM in the ARIC training cohort and validated in an external community-based cohort (Cardiovascular Health Study [CHS]; n = 802) and an electronic health record (EHR) cohort (n = 5071). Clustering identified three phenogroups in the derivation cohort. Phenogroup-3 (n = 324, 27% of the cohort) had significantly higher 5-year HF incidence than other phenogroups (12.1% vs. 4.6% [phenogroup 2] vs. 3.1% [phenogroup 1]) and was identified as the high-risk DbCM phenotype. The key echocardiographic predictors of high-risk DbCM phenotype were higher NT-proBNP levels, increased left ventricular mass and left atrial size, and worse diastolic function. In the CHS and University of Texas (UT) Southwestern EHR validation cohorts, the DeepNN classifier identified 16% and 29% of participants with DbCM, respectively. Participants with (vs. without) high-risk DbCM phenotype in the external validation cohorts had a significantly higher incidence of HF (hazard ratio [95% confidence interval] 1.61 [1.18-2.19] in CHS and 1.34 [1.08-1.65] in the UT Southwestern EHR cohort).
Conclusion: Machine learning-based techniques may identify 16% to 29% of individuals with diabetes as having a high-risk DbCM phenotype who may benefit from more aggressive implementation of HF preventive strategies.
(© 2024 The Author(s). European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.)
Databáze: MEDLINE