Oral administration of recombinant Lactococcus lactis expressing largemouth bass (Micropterus salmoides) IFNa3 protein enhances immune response against largemouth bass virus (LMBV) infection.
Autor: | Hua X; National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China., Li C; National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China., Xiao Y; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China., Lu Y; Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA., Liu X; National Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, Hubei, China. Electronic address: xueqinliu@mail.hzau.edu.cn. |
---|---|
Jazyk: | angličtina |
Zdroj: | Fish & shellfish immunology [Fish Shellfish Immunol] 2024 Nov; Vol. 154, pp. 109875. Date of Electronic Publication: 2024 Sep 03. |
DOI: | 10.1016/j.fsi.2024.109875 |
Abstrakt: | Largemouth bass virus (LMBV) is a highly pathogenic pathogen that often causes high mortality of affected largemouth bass and significant financial losses. Type I interferon as an effective and broad spectrum tool has been successfully used for therapeutic or prophylactic treatment some viral infections. However, the implementation of immunotherapies based on interferon administration to combat LMBV infections has not been reported. And Lactic Acid Bacteria (LAB) are a powerful vehicle for expressing cytokines or immunostimulant peptides at the gastrointestinal level after oral administration. In this study, Lactococcus lactis (L. lactis) expression system with lactose as a screening marker was utilized to express the Micropterus salmoides interferon a3 (IFNa3) protein and orally administered to largemouth bass. The genetically engineered strain pNZ8149-Usp45-IFNa3-6His/L. lactis NZ3900 was successfully constructed, and its potential to elicit immune protection response by oral administration was evaluated. After orally administration, the recombinant L. lactis was detected in guts of experimental fish and remained detectable for 72 h. Additionally, IFNa3 was able to enhance the test fish's immune response, as determined by the relatively increased mRNA relative expression of immune-related genes in the liver, spleen, and kidney tissues, including IFN-γ, TNF-α, IL-1β, IL-8, IgM and IgT. Following LMBV challenge, the experiment group of pNZ8149-Usp45-IFNa3-6His/L. lactis NZ3900 exhibited a 70 % survival rate, while survival rate were 15 % in the PBS control group, 45 % in the pNZ8149/L. lactis NZ3900 group. Furthermore, the viral load in the surviving fish was significantly lower than that of the control groups. These findings suggest that oral administration of recombinant L. lactis producing IFNa3 induces largemouth bass immune responses at a systemic level to effective prevent and combat of LMBV infection. (Copyright © 2024 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |