Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes.
Autor: | García-Arribas AB; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain., Ibáñez-Freire P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain., Carlero D; Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología CSIC, Madrid, 28049, Spain., Palacios-Alonso P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain., Cantero-Reviejo M; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain., Ares P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain., López-Polín G; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain., Yan H; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK., Wang Y; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK., Sarkar S; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK., Chhowalla M; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK., Oksanen HM; Faculty of Biological and Environmental Sciences, Vijkki Biocenter, University of Helsinki, Helsinki, 00014, Finland., Martín-Benito J; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain., de Pablo PJ; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.; Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid, Madrid, 28049, Spain., Delgado-Buscalioni R; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.; Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid, Madrid, 28049, Spain. |
---|---|
Jazyk: | angličtina |
Zdroj: | Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Adv Sci (Weinh)] 2024 Nov; Vol. 11 (41), pp. e2404186. Date of Electronic Publication: 2024 Sep 04. |
DOI: | 10.1002/advs.202404186 |
Abstrakt: | Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies. (© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.) |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |