Towards Establishing Best Practice in the Analysis of Hydrogen and Deuterium by Atom Probe Tomography.
Autor: | Gault B; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany.; Department of Materials, Imperial College London, Royal School of Mines, Prince Consort Rd, South Kensington, London SW7 2AZ, UK., Saksena A; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany., Sauvage X; Groupe de Physique des Matériaux, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, UMR6634, Avenue de l'Université, BP12, 76800 Saint-Etienne-du-Rouvray, France., Bagot P; Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK., Aota LS; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany., Arlt J; Institute for Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, Göttingen D-37077, Germany., Belkacemi LT; Leibniz-Institute for Materials Engineering-IWT, Badgasteiner Straße 3, Bremen 28359, Germany.; MAPEX Center for Materials and Processes, Universität Bremen, Bibliothekstraße 1, Bremen 28359, Germany., Boll T; Institute for Applied Materials (IAM-WK) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany., Chen YS; Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, Camperdown, NSW 2006, Australia.; School of Materials Science and Engineering, Nayang Technological University, 50 Nanyang Avenue, 639798 Singapore., Daly L; Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK.; Australian Centre for Microscopy and Microanalysis, Madsen Building F09, The University of Sydney, Camperdown, NSW 2006, Australia.; School of Geographical and Earth Sciences, University of Glasgow, 8NN University Avenue, Glasgow G12 8QQ, UK., Djukic MB; Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Belgrade 11120, Serbia., Douglas JO; Department of Materials, Imperial College London, Royal School of Mines, Prince Consort Rd, South Kensington, London SW7 2AZ, UK., Duarte MJ; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany., Felfer PJ; Department of Materials Science & Engineering, Institute I: General Materials Properties, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 5, Erlangen 91058, Germany., Forbes RG; Quantum Foundations and Technologies Group, School of Mathematics and Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK., Fu J; Department of Mechanical and Aerospace Engineering, Monash University, 17 College Walk, Clayton, VIC 3168, Australia., Gardner HM; Materials Science and Engineering, UK Atomic Energy Authority, Culham Campus, Abingdon, Oxfordshire OX14 3DB, UK., Gemma R; Department of Applied Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan.; Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan., Gerstl SSA; Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, Zurich 8093, Switzerland., Gong Y; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany.; Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK., Hachet G; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany., Jakob S; Department of Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden., Jenkins BM; Groupe de Physique des Matériaux, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, UMR6634, Avenue de l'Université, BP12, 76800 Saint-Etienne-du-Rouvray, France., Jones ME; National Nuclear Laboratory, Windscale Laboratory, Sellafield, Seascale, Cumbria CA20 1PG, UK., Khanchandani H; Department of Materials Science and Engineering, Norwegian University of Science and Technology, 325 Kjemiblokk 1 Gløshaugen, Trondheim 7491, Norway., Kontis P; Department of Materials Science and Engineering, Norwegian University of Science and Technology, 325 Kjemiblokk 1 Gløshaugen, Trondheim 7491, Norway., Krämer M; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany., Kühbach M; Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany., Marceau RKW; Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC 3216, Australia., Mayweg D; Department of Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden., Moore KL; Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK., Nallathambi V; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany.; Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany., Ott BC; Department of Materials Science & Engineering, Institute I: General Materials Properties, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 5, Erlangen 91058, Germany., Poplawsky JD; Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA., Prosa T; CAMECA Instruments, Inc., 5470 Nobel Drive, Madison, WI 53711, USA., Pundt A; Karlsruhe Institute of Technology KIT, IAM-WK, Kaiserstraße 12, Karlsruhe 36131, Germany., Saha M; Research Centre for Magnetic and Spintronic Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan., Schwarz TM; Max-Planck-Institute für Eisenforschung GmbH (now Max Planck Institute for Sustainable Materials), Max-Planck-Straße 1, Düsseldorf 40237, Germany., Shang Y; Department of Materials Design, Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon GmbH, Geesthacht 21502, Germany., Shen X; Institute of Materials Engineering, University of Kassel, Moenchebergstr.3, Kassel 34125, Germany., Vrellou M; Institute for Applied Materials, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe 76131, Germany., Yu Y; Institute of Physics (IA), RWTH Aachen University, Otto-Blumenthal-Straße 18, Aachen 52056, Germany., Zhao Y; Institute for Materials, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany., Zhao H; State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xianning West Road, 28#, Xi'an, Shaanxi Province, 710049, China., Zou B; Institute of Materials Engineering, University of Kassel, Moenchebergstr.3, Kassel 34125, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada [Microsc Microanal] 2024 Sep 03. Date of Electronic Publication: 2024 Sep 03. |
DOI: | 10.1093/mam/ozae081 |
Abstrakt: | As hydrogen is touted as a key player in the decarbonization of modern society, it is critical to enable quantitative hydrogen (H) analysis at high spatial resolution and, if possible, at the atomic scale. H has a known deleterious impact on the mechanical properties (strength, ductility, toughness) of most materials that can hinder their use as part of the infrastructure of a hydrogen-based economy. Enabling H mapping including local hydrogen concentration analyses at specific microstructural features is essential for understanding the multiple ways that H affect the properties of materials including embrittlement mechanisms and their synergies. In addition, spatial mapping and quantification of hydrogen isotopes is essential to accurately predict tritium inventory of future fusion power plants thus ensuring their safe and efficient operation. Atom probe tomography (APT) has the intrinsic capability to detect H and deuterium (D), and in principle the capacity for performing quantitative mapping of H within a material's microstructure. Yet, the accuracy and precision of H analysis by APT remain affected by complex field evaporation behavior and the influence of residual hydrogen from the ultrahigh vacuum chamber that can obscure the signal of H from within the material. The present article reports a summary of discussions at a focused workshop held at the Max-Planck Institute for Sustainable Materials in April 2024. The workshop was organized to pave the way to establishing best practices in reporting APT data for the analysis of H. We first summarize the key aspects of the intricacies of H analysis by APT and then propose a path for better reporting of the relevant data to support interpretation of APT-based H analysis in materials. Competing Interests: Conflict of Interest The authors declare that they have no competing interest. (© The Author(s) 2024. Published by Oxford University Press on behalf of the Microscopy Society of America.) |
Databáze: | MEDLINE |
Externí odkaz: |