Scale-dependent population drivers inform avian management in a declining saline lake ecosystem.
Autor: | Van Tatenhove AM; Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA., Neill J; Great Salt Lake Ecosystem Program, Utah Division of Wildlife Resources, Hooper, Utah, USA., Norvell RE; Utah Division of Wildlife Resources, Salt Lake City, Utah, USA., Stuber EF; Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA.; U.S. Geological Survey Utah Cooperative Fish and Wildlife Research Unit, Utah State University, Logan, Utah, USA., Rushing CS; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA. |
---|---|
Jazyk: | angličtina |
Zdroj: | Ecological applications : a publication of the Ecological Society of America [Ecol Appl] 2024 Oct; Vol. 34 (7), pp. e3021. Date of Electronic Publication: 2024 Sep 01. |
DOI: | 10.1002/eap.3021 |
Abstrakt: | Shrinking saline lakes provide irreplaceable habitat for waterbird species globally. Disentangling the effects of wetland habitat loss from other drivers of waterbird population dynamics is critical for protecting these species in the face of unprecedented changes to saline lake ecosystems, ideally through decision-making frameworks that identify effective management options and their potential outcomes. Here, we develop a framework to assess the effects of hypothesized population drivers and identify potential future outcomes of plausible management scenarios on a saline lake-reliant waterbird species. We use 36 years of monitoring data to quantify the effects of environmental conditions on the population size of a regionally important breeding colony of American white pelicans (Pelecanus erythrorhynchos) at Great Salt Lake, Utah, US, then forecast colony abundance under various management scenarios. We found that low lake levels, which allow terrestrial predators access to the colony, are probable drivers of recent colony declines. Without local management efforts, we predicted colony abundance could likely decline approximately 37.3% by 2040, although recent colony observations suggest population declines may be more extreme than predicted. Results from our population projection scenarios suggested that proactive approaches to preventing predator colony access and reversing saline lake declines are crucial for the persistence of the Great Salt Lake pelican colony. Increasing wetland habitat and preventing predator access to the colony together provided the most effective protection, increasing abundance 145.4% above projections where no management actions are taken, according to our population projection scenarios. Given the importance of water levels to the persistence of island-nesting colonial species, proactive approaches to reversing saline lake declines could likely benefit pelicans as well as other avian species reliant on these unique ecosystems. (© 2024 The Ecological Society of America. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.) |
Databáze: | MEDLINE |
Externí odkaz: |