Quantum Topological Atomic Properties of 44K molecules.
Autor: | Meza-González B; Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxinclude thexico, Mexico City, Mexico., Ramírez-Palma DI; Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico., Carpio-Martínez P; Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, km. 14.5, Toluca, Estado de México, C.P. 50200, Mexico., Vázquez-Cuevas D; Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico., Martínez-Mayorga K; Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico., Cortés-Guzmán F; Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Méxinclude thexico, Mexico City, Mexico. fercor@unam.mx. |
---|---|
Jazyk: | angličtina |
Zdroj: | Scientific data [Sci Data] 2024 Aug 29; Vol. 11 (1), pp. 945. Date of Electronic Publication: 2024 Aug 29. |
DOI: | 10.1038/s41597-024-03723-0 |
Abstrakt: | We present a data set of quantum topological properties of atoms of 44K randomly selected molecules from the GDB-9 data set. These atomic properties were obtained as defined by the quantum theory of atoms in molecules (QTAIM) within an atomic basin, a region of real space bounded by zero-flux surfaces in the electron density gradient vector field. The wave function files were generated through DFT static calculations (B3LYP/6-31G), and the atomic properties were calculated using QTAIM. The calculated atomic properties include the energy of the atomic basin, the electronic population, the magnitude of the total dipole moment, and the magnitude of the total quadrupole moment. The atomic properties allow one to understand the chemical structure, reactivity, and molecular recognition. They can be incorporated into force fields for molecular dynamics or for predicting reactive sites. We believe that this data set could facilitate new studies in chemical informatics, machine learning applied to chemistry, and computational molecular design. (© 2024. The Author(s).) |
Databáze: | MEDLINE |
Externí odkaz: |