Autor: |
Minoofar A, Alhaddad A, Ko W, Karapetyan N, Almaiman A, Zhou H, Ramakrishnan M, Annavaram M, Tur M, Habif JL, Willner AE |
Jazyk: |
angličtina |
Zdroj: |
Optics letters [Opt Lett] 2024 Sep 01; Vol. 49 (17), pp. 4899-4902. |
DOI: |
10.1364/OL.530189 |
Abstrakt: |
Compared to its electronic counterpart, optically performed matrix convolution can accommodate phase-encoded data at high rates while avoiding optical-to-electronic-to-optical (OEO) conversions. We experimentally demonstrate a reconfigurable matrix convolution of quadrature phase-shift keying (QPSK)-encoded input data. The two-dimensional (2-D) input data is serialized, and its time-shifted replicas are generated. This 2-D data is convolved with a 1-D kernel with coefficients, which are applied by adjusting the relative phase and amplitude of the kernel pumps. Time-shifted data replicas (TSDRs) and kernel pumps are coherently mixed using nonlinear wave mixing in a periodically poled lithium niobate (PPLN) waveguide. To show the tunability and reconfigurability of this approach, we vary the kernel coefficients, kernel sizes (e.g., 2 × 1 or 3 × 1), and input data rates (e.g., 6-20 Gbit/s). The convolution results are verified to be error-free under an applied: (a) 2 × 1 kernel, resulting in a 16-quadrature amplitude modulation (QAM) output with an error vector magnitude (EVM) of ∼5.1-8.5%; and (b) 3 × 1 kernel, resulting in a 64-QAM output with an EVM of ∼4.9-5.5%. |
Databáze: |
MEDLINE |
Externí odkaz: |
|