Multi-generational dispersal and dynamic patch occupancy reveals spatial and temporal stability of seascapes.
Autor: | Clubley CH; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark. Electronic address: cclubley@ecos.au.dk., Silva TAM; Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science, NR33 0HT Lowestoft, United Kingdom., Wood LE; Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; Department of Biology, University of Fribourg, Chemin du Musée 15, CH-1700 Fribourg, Switzerland., Firth LB; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland., Bilton DT; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa., O'Dea E; Met Éireann, 65/67 Glasnevin Hill, Dublin 9 D09 Y921, Ireland; Met Office, FitzRoy Road, Exeter, Devon EX1 3PB, United Kingdom., Knights AM; School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Science of the total environment [Sci Total Environ] 2024 Nov 20; Vol. 952, pp. 175762. Date of Electronic Publication: 2024 Aug 26. |
DOI: | 10.1016/j.scitotenv.2024.175762 |
Abstrakt: | The success of non-native species (NNS) invasions depends on patterns of dispersal and connectivity, which underpin genetic diversity, population establishment and growth. In the marine environment, both global environmental change and increasing anthropogenic activity can alter hydrodynamic patterns, leading to significant inter-annual variability in dispersal pathways. Despite this, multi-generational dispersal is rarely explicitly considered in attempts to understand NNS spread or in the design of management interventions. Here, we present a novel approach to quantifying species spread that considers range expansion and network formation across time using the non-native Pacific oyster, Magallana gigas (Thunberg 1793), as a model. We combined biophysical modelling, dynamic patch occupancy models, consideration of environmental factors, and graph network theory to model multi-generational dispersal in northwest Europe over 13 generations. Results revealed that M. gigas has a capacity for rapid range expansion through the creation of an ecological network of dispersal pathways that remains stable through time. Maximum network size was achieved in four generations, after which connectivity patterns remained temporally stable. Multi-generational connectivity could therefore be divided into two periods: network growth (2000-2003) and network stability (2004-2012). Our study is the first to examine how dispersal trajectories affect the temporal stability of ecological networks across biogeographic scales, and provides an approach for the assignment of site-based prioritisation of non-native species management at different stages of the invasion timeline. More broadly, the framework we present can be applied to other fields (e.g. Marine Protected Area design, management of threatened species and species range expansion due to climate change) as a means of characterising and defining ecological network structure, functioning and stability. Competing Interests: Declaration of competing interest Authors declare no known competing interests. Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Crown Copyright © 2024. Published by Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |