Membrane separation assisted colorimetric/fluorescent detection of β-galactosidase-positive bacteria in milk and milk powder based on the oxidase-like activity of CoOOH nanosheets.

Autor: Fan Y; Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China., Fu L; Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China., Su H; Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China., Tang L; Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China., Wu Q; Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China., Jia L; Ministry of Education Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China. Electronic address: jiali@scnu.edu.cn.
Jazyk: angličtina
Zdroj: Food chemistry [Food Chem] 2024 Dec 15; Vol. 461, pp. 140946. Date of Electronic Publication: 2024 Aug 22.
DOI: 10.1016/j.foodchem.2024.140946
Abstrakt: Species-specific enzymes provide a substantial boost to the precision and selectivity of identifying dairy products contaminated with foodborne pathogens, due to their specificity for target organisms. In this study, we developed cobalt oxyhydroxide nanosheets (CoOOH NSs) for a dual-mode biosensor capable of detecting β-galactosidase (β-Gal)-positive bacteria in milk and milk powder. The sensor exploits the oxidase-mimicking activity of CoOOH NSs, where β-Gal converts the substrate β-D-galactopyranoside to p-aminophenol, reducing CoOOH NSs to Co 2+ and inhibiting the formation of the blue product from 3,3',5,5'-tetramethylben-zidine. Sensitivity was enhanced through membrane filtration and β-Gal induction by isopropyl β-D-thiogalactoside. The assay achieved a detection limit of 5 cfu mL -1 and demonstrated recoveries (90.7 % to 103 %) and relative standard deviations <5.7 % in milk and milk powder samples. These findings underscore the potential of the sensor for detecting β-Gal-positive bacteria in dairy products.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE