Cerebro-spinal flow pattern in the cervical subarachnoid space of healthy volunteers: Influence of the spinal cord morphology.

Autor: Leblond L; Laboratoire de Biomécanique Appliquée, UMRT24, Aix Marseille Université, Marseille, France.; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France., Sudres P; Laboratoire de Biomécanique Appliquée, UMRT24, Aix Marseille Université, Marseille, France.; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France., Evin M; Laboratoire de Biomécanique Appliquée, UMRT24, Aix Marseille Université, Marseille, France.; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France.
Jazyk: angličtina
Zdroj: PloS one [PLoS One] 2024 Aug 26; Vol. 19 (8), pp. e0290927. Date of Electronic Publication: 2024 Aug 26 (Print Publication: 2024).
DOI: 10.1371/journal.pone.0290927
Abstrakt: Introduction: Toward further cerebro-spinal flow quantification in clinical practice, this study aims at assessing the variations in the cerebro spinal fluid flow pattern associated with change in the morphology of the subarachnoid space of the cervical canal of healthy humans by developing a computational fluid dynamics model.
Methods: 3D T2-space MRI sequence images of the cervical spine were used to segment 11 cervical subarachnoid space. Model validation (time-step, mesh size, size and number of boundary layers, influences of parted inflow and inflow continuous velocity) was performed a 40-year-old patient-specific model. Simulations were performed using computational fluid dynamics approach simulating transient flow (Sparlart-Almaras turbulence model) with a mesh size of 0.6, 6 boundary layers of 0.05 mm, a time step of 20 ms simulated on 15 cycles. Distributions of components velocity and WSS were respectively analyzed within the subarachnoid space (intervertebral et intravertebral levels) and on dura and pia maters.
Results: Mean values cerebro spinal fluid velocity in specific local slices of the canal range between 0.07 and 0.17 m.s-1 and 0.1 and 0.3 m.s-1 for maximum values. Maximum wall shear stress values vary between 0.1 and 0.5 Pa with higher value at the middle of the cervical spine on pia mater and at the lower part of the cervical spine on dura mater. Intra and inter-individual variations of the wall shear stress were highlighted significant correlation gwith compression ratio (r = 0.76), occupation ratio and cross section area of the spinal cord.
Conclusion: The inter-individual variability in term of subarachnoid canal morphology and spinal cord position influence the cerebro-spinal flow pattern, highlighting the significance of canal morphology investigation before surgery.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2024 Leblond et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje