Development of a skeletal muscle sheet with direct reprogramming-induced myoblasts on a nanogel-cross-linked porous freeze-dried gel scaffold in a mouse gastroschisis model.

Autor: Nagano S; Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan. shinta@koto.kpu-m.ac.jp.; Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan. shinta@koto.kpu-m.ac.jp., Fumino S; Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan., Kishida T; Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan., Wakao J; Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.; Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan., Hirohata Y; Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.; Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan., Takayama S; Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan., Kim K; Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan., Akiyoshi K; Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan., Mazda O; Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan., Tajiri T; Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan., Ono S; Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Jazyk: angličtina
Zdroj: Pediatric surgery international [Pediatr Surg Int] 2024 Aug 26; Vol. 40 (1), pp. 241. Date of Electronic Publication: 2024 Aug 26.
DOI: 10.1007/s00383-024-05811-z
Abstrakt: Purpose: In this study, we attempted to create skeletal muscle sheets made of directly converted myoblasts (dMBs) with a nanogel scaffold on a biosheet using a mouse gastroschisis model.
Methods: dMBs were prepared by the co-transfection of MYOD1 and MYCL into human fibroblasts. Silicon tubes were implanted under the skin of NOG/SCID mice, and biosheets were formed. The nanogel was a nanoscale hydrogel based on cholesterol-modified pullulan, and a NanoClip-FD gel was prepared by freeze-drying the nanogel. 7 mm in length was created in the abdominal wall of NOG/SCID mice as a mouse gastroschisis model. Matrigel or NanoCliP-FD gel seeded with dMBs was placed on the biosheet and implanted on the model mice.
Results: Fourteen days after surgery, dMBs with Matrigel showed a small amount of coarse aggregations of muscle-like cells. In contrast, dMBs with NanoCliP-FD gel showed multinucleated muscle-like cells, which were expressed as desmin and myogenin by fluorescent immunostaining.
Conclusion: Nanogels have a porous structure and are useful as scaffolds for tissue regeneration by supplying oxygen and nutrients supply to the cells. Combining dMBs and nanogels on the biosheets resulted in the differentiation and engraftment of skeletal muscle, suggesting the possibility of developing skeletal muscle sheets derived from autologous cells and tissues.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Databáze: MEDLINE