Advanced glycation end products mediate biomineralization disorder in diabetic bone disease.

Autor: Gao Q; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Jiang Y; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China. Electronic address: yjiang8@shu.edu.cn., Zhou D; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Li G; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Han Y; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Yang J; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Xu K; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Jing Y; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Bai L; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Geng Z; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Zhang H; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China., Zhou G; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Zhu M; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Ji N; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Han R; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China., Zhang Y; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China., Li Z; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China., Wang C; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China., Hu Y; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China., Shen H; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China., Wang G; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China., Shi Z; Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China., Han Q; Orthopaedic Department, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China. Electronic address: 1975hanql@163.com., Chen X; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China. Electronic address: sirchenxiao@126.com., Su J; Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China. Electronic address: drsujiacan@163.com.
Jazyk: angličtina
Zdroj: Cell reports. Medicine [Cell Rep Med] 2024 Sep 17; Vol. 5 (9), pp. 101694. Date of Electronic Publication: 2024 Aug 21.
DOI: 10.1016/j.xcrm.2024.101694
Abstrakt: Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.
Competing Interests: Declaration of interests The authors declare no competing interests.
(Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
Databáze: MEDLINE