Milkweed in agricultural field margins - A neonicotinoid exposure route for pollinators at multiple life stages.
Autor: | Naujokaitis-Lewis I; Landscape Science and Technology Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada. Electronic address: ilona.naujokaitis-lewis@ec.gc.ca., Endicott S; Landscape Science and Technology Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada., Gaudreault E; Production Insurance, Business Risk Management Branch, Ministry of Agriculture and Food, Kelowna, BC, Canada., Maisonneuve F; Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada., Robinson SA; Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON, Canada. Electronic address: stacey.robinson@ec.gc.ca. |
---|---|
Jazyk: | angličtina |
Zdroj: | The Science of the total environment [Sci Total Environ] 2024 Nov 15; Vol. 951, pp. 175622. Date of Electronic Publication: 2024 Aug 18. |
DOI: | 10.1016/j.scitotenv.2024.175622 |
Abstrakt: | Neonicotinoid insecticides move from targeted crops to wildflowers located in adjacent field margins, acting as a potential exposure source for wild pollinators and insect species of conservation concern, including monarch butterflies. Monarchs rely on milkweed over multiple life stages, including as a host plant for eggs and a food source for both larvae (leaves) and adults (flowers). Milkweeds, which are closely associated with field margins, can contain neonicotinoid residues, but previous assessments are constrained to a single plant tissue type. In 2017 and 2018, we sampled milkweeds from 95 field margins adjacent to crop fields (corn, soybean, hay, wheat, and barley) in agricultural landscapes of eastern Ontario, Canada. Milkweeds were sampled during the flower blooming period and leaves and flower tissues were analysed. The neonicotinoids acetamiprid, clothianidin, thiamethoxam, and thiacloprid were detected. Maximum concentrations in leaf samples included 10.30 ng/g of clothianidin in 2017, and 24.4 ng/g of thiamethoxam in 2018. Clothianidin and thiamethoxam percent detections in flowers (72 % and 61 %, respectively) were significantly higher than detections in leaves (24 % and 31 %, respectively). Thiamethoxam concentrations were significantly higher in paired flower samples than leaf samples (median 0.33 ng/g vs <0.07 ng/g) while clothianidin concentrations also trended higher in flowers (median 0.18-0.55 ng/g vs <0.18 ng/g). Only thiamethoxam showed significant differences between years, and we found no effect of crop type, with hay, soybean and corn fields all yielding 50-56 % detections in leaves. We found significantly higher concentrations in older milkweed flowers than young flowers or leaves (medians 0.87 ng/g vs <0.18 ng/g and 0.45 ng/g vs <0.07 ng/g for clothianidin and thiamethoxam, respectively). Our results highlight the importance of considering variation in milkweed tissue type and age of flowers in neonicotinoid exposure risk assessments. Efforts to increase milkweed availability in agricultural landscapes should consider how exposure to neonicotinoids can be mitigated. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Crown Copyright © 2024. Published by Elsevier B.V. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |