Chronic dietary exposure to glyphosate-induced connexin 43 autophagic degradation contributes to blood-testis barrier disruption in roosters.

Autor: Liang Q; College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China., Liu BY; Yantai Academy of Agricultural Sciences, Yan'tai City 265500, Shandong Province, China., Zhang TL; College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China., Zhang HJ; New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City 250101, Shandong Province, China., Ren YL; College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China., Wang HP; College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China., Wang H; College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China., Wang L; College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, Shandong Province 271017, China. Electronic address: wanglin2013@sdau.edu.cn.
Jazyk: angličtina
Zdroj: The Science of the total environment [Sci Total Environ] 2024 Nov 15; Vol. 951, pp. 175606. Date of Electronic Publication: 2024 Aug 17.
DOI: 10.1016/j.scitotenv.2024.175606
Abstrakt: Glyphosate (GLY) is the most universally used herbicide worldwide and its application has caused extensive pollution to the ecological environment. Increasing evidence has revealed the multi-organ toxicity of GLY in different species, but its male reproductive toxicity in avian species remains unknown. Thus, in vivo and in vitro studies were conducted to clarify this issue. Data firstly showed that chronic GLY exposure caused testicular pathological damage. Intriguingly, we identified and verified a marked down-regulation gap junction gene Connexin 43 (Cx43) in GLY-exposed rooster testis by transcriptome analysis. Cx43 generated by Sertoli cells acts as a key component of blood-testis barrier (BTB). To further investigate the cause of GLY-induced downregulation of Cx43 to disrupt BTB, we found that autophagy activation is revealed in GLY-exposed rooster testis and primary avian Sertoli cells. Moreover, GLY-induced Cx43 downregulation was significantly alleviated by ATG5 knockdown or CQ administration, respectively, demonstrating that GLY-induced autophagy activation contributed to Cx43 degradation. Mechanistically, GLY-induced autophagy activation and resultant Cx43 degradation was due to its direct interaction with ER-α. In summary, these findings demonstrate that chronic GLY exposure activates autophagy to induce Cx43 degradation, which causes BTB damage and resultant reproductive toxicity in roosters.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE