Enhancing the oxygen evolution reaction activity of CuCo based hydroxides with V 2 CT x MXene.

Autor: Schmiedecke B; Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Germany Michelle.browne@helmholtz-berlin.de., Wu B; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6 Czech Republic., Schultz T; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Berlin 14109 Germany.; Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin Berlin 12489 Germany., Emerenciano AA; Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Germany Michelle.browne@helmholtz-berlin.de., Sharma N; Young Investigator Group Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Germany., Douglas-Henry DA; School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green Dublin D02 PN40 Ireland., Koutsioukis A; School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green Dublin D02 PN40 Ireland., Görüryılmaz MT; Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Germany Michelle.browne@helmholtz-berlin.de., Nicolosi V; School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin College Green Dublin D02 PN40 Ireland., Petit T; Young Investigator Group Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Germany., Koch N; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Berlin 14109 Germany.; Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin Berlin 12489 Germany., Sofer Z; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5 166 28 Prague 6 Czech Republic., Browne MP; Helmholtz Young Investigator Group Electrocatalysis: Synthesis to Devices, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Albert-Einstein-Str. 15 12489 Berlin Germany Michelle.browne@helmholtz-berlin.de.
Jazyk: angličtina
Zdroj: Journal of materials chemistry. A [J Mater Chem A Mater] 2024 Aug 02; Vol. 12 (36), pp. 24248-24259. Date of Electronic Publication: 2024 Aug 02 (Print Publication: 2024).
DOI: 10.1039/d4ta02700k
Abstrakt: The oxygen evolution reaction (OER) is a key reaction in the production of green hydrogen by water electrolysis. In alkaline media, the current state of the art catalysts used for the OER are based on non-noble metal oxides. However, despite their huge potential as OER catalysts, these materials exhibit various disadvantages including lack of stability and conductivity that hinder the wide-spread utilization of these materials in alkaline electrolyzer devices. This study highlights the innovative chemical functionalization of a mixed copper cobalt hydroxide with the V 2 CT x MXene to enhance the OER efficiency, addressing the need for effective electrocatalytic interfaces for sustainable hydrogen production. The herein synthesized CuCo@V 2 CT x electrocatalysts demonstrate remarkable activity, outperforming the pure CuCo catalysts for the OER and moreover show increased efficiency after 12 hours of continuous operation. This strategic integration improved the water oxidation performance of the pure oxide material by improving the composite's hydrophilicity, charge transfer properties and ability to hinder Cu leaching. The materials were characterized using an array of materials characterization techniques to help decipher both structure of the composite materials after synthesis and to elucidate the reasoning for the OER enhancement for the composites. This work demonstrates the significant potential of TMO-based nanomaterials combined with V 2 CT x for advanced innovative electrocatalytic interfaces in energy conversion applications.
Competing Interests: There are no conflicts to declare.
(This journal is © The Royal Society of Chemistry.)
Databáze: MEDLINE