New insights on the degradation of polystyrene and polypropylene by larvae of the superworm Zophobas atratus and gut bacterial consortium enrichments obtained under different culture conditions.

Autor: Miravalle E; Department of Chemistry, University of Turin, 10125 Turin, Italy; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address: edoardo.miravalle@unito.it., Balboa S; Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address: sabela.balboa@usc.es., Zanetti M; Department of Chemistry, University of Turin, 10125 Turin, Italy. Electronic address: marco.zanetti@unito.it., Otero A; Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Aquatic One Health Research Institute (iARCUS). Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address: anamaria.otero@usc.es., Lazzari M; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address: massimo.lazzari@usc.es.
Jazyk: angličtina
Zdroj: Journal of hazardous materials [J Hazard Mater] 2024 Oct 05; Vol. 478, pp. 135475. Date of Electronic Publication: 2024 Aug 13.
DOI: 10.1016/j.jhazmat.2024.135475
Abstrakt: This study aims to deepen knowledge of the biodegradation of plastics, focusing on polypropylene (PP) fabric from surgical masks and polystyrene (PS) by larvae of Zophobas atratus as well as of specialized bacterial consortia from their gut, which were obtained in different enrichment conditions (aerobic, anaerobic, presence or absence of combined nitrogen). Plastics ingested by larvae obtained in Spain did not show any signs of oxidation but only limited depolymerization, preferably from the lowest molecular weight chains. Gut microbiota composition changed as an effect of plastic feeding. Such differences were more evident in bacterial enrichment cultures, where the polymer type influenced the composition more than by culture conditions, with an increase in the presence of nitrogen-fixers in anaerobic conditions. PS and PP degradation by different enrichment cultures was confirmed under aerobic and anaerobic conditions by respirometry tests, with anaerobic conditions favouring a more active plastic degradation. In addition, exposure to selected bacterial consortia in aerobiosis induced limited surface oxidation of PS. This possibly indicates that different biochemical routes are being utilized in the anaerobic gut and in aerobic conditions to degrade the polymer.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE