Effects of storm events on nutrient characteristics in a stratified drinking water reservoir: Behavior, transmission pathways and management strategy.

Autor: Zhang X; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address: xuanzhang0303@163.com., Huang T; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address: huangtinglin@xauat.edu.cn., Li K; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address: likai@xauat.edu.cn., Zhang H; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China., Wang Q; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China., Wang Y; Field Scientific Observation and Research Station for Qinling Water Source Water Quality of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China., Wang C; Xi'an Water Affairs (Group) Lijiahe Reservoir Management Co., Ltd, Xi'an, 710016, China.
Jazyk: angličtina
Zdroj: Environmental research [Environ Res] 2024 Nov 15; Vol. 261, pp. 119762. Date of Electronic Publication: 2024 Aug 07.
DOI: 10.1016/j.envres.2024.119762
Abstrakt: Storm events result in nutrient fluctuations and deterioration of reservoir water supply quality. Understanding of nutrient dynamics (e.g., concentration, composition, loads and transport pathways) and adoption of effective management strategies are critical for safeguarding water quality. A comprehensive monitoring was conducted for three storm events during the rainy season in 2023. Results showed nitrogen (N) and phosphorus (P) dynamics demonstrate a significant response to hydrological process. Rainfall resulted in the highest event mean concentrations (EMCs) of total nitrogen (TN), nitrate nitrogen (NO 3 - -N), ammonia nitrogen (NH 4 + -N), total phosphorus (TP), and particulate phosphorus (PP) in the runoff being 1.97, 2.15, 2.30, 44.17, and 62.38 times higher than those observed in baseflow. On average, NO 3 - -N/PP accounted for 82 %/96 % of N/P exports. Hysteresis analyses reveal that NH 4 + -N and PP were mainly transported by surface runoff from over-land sources, whereas TN and NO 3 - -N were primarily delivered by subsurface runoff. Additionally, nutrient concentrations were significantly higher in the intrusive layer in reservoir compared to the pre-storm period, which gradually decreased from the tail to the head as particulate sedimentation and water column mixing occurred. Water-lifting-aerators (WLAs) were employed to alter the reservoir thermal stratification regime via artificial mixing to affect the intrusive layer of storm runoff. Comparison of the intrusive layer for three storms reveals that WLAs triggers the storm runoff to form an underflow via increasing the reservoir bottom water temperature above that the runoff, ensuring that water quality at the intake position remains unaffected by inflows. These findings serve as a reference for the response of reservoir eutrophication levels to storm events and present practical engineering experience for enhancing water quality safety during the rainy season.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE