HLA Awareness in tissue decellularization: A paradigm shift for enhanced biocompatibility, studied on the model of the human fascia lata graft.

Autor: Manon J; UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium. Electronic address: julie.manon@uclouvain.be., Evrard R; UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium., Maistriaux L; UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium., Fieve L; UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium., Xhema D; UCLouvain - IREC, Transplantation and Experimental Surgery Lab (CHEX), Avenue Hippocrate 55 - B1.55.04, 1200 Brussels, Belgium., Heller U; APHP, Necker Enfants Malades, Unit of Maxillofacial Surgery and Plastic Surgery, Paris, France; IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France., Broeck LVD; UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium., Vettese J; UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium., Boisson J; IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France., Schubert T; UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium., Lengele B; UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Plastic and Reconstructive Surgery, Brussels 1200, Belgium., Behets C; UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium., Cornu O; UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium.
Jazyk: angličtina
Zdroj: Biomaterials [Biomaterials] 2025 Jan; Vol. 312, pp. 122741. Date of Electronic Publication: 2024 Aug 02.
DOI: 10.1016/j.biomaterials.2024.122741
Abstrakt: Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
Databáze: MEDLINE