A fluorescent Aptasensor based on magnetic-separation strategy with gold nanoclusters for Deoxynivalenol (DON) detection.

Autor: Lu N; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China., Ma J; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China., Lin Y; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China., Cheng JH; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China., Sun DW; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland. Electronic address: dawen.sun@ucd.ie.
Jazyk: angličtina
Zdroj: Food chemistry [Food Chem] 2024 Nov 30; Vol. 459, pp. 140341. Date of Electronic Publication: 2024 Jul 05.
DOI: 10.1016/j.foodchem.2024.140341
Abstrakt: A highly sensitive method based on MBs-cDNA@Apt-AuNCs 519 was developed for deoxynivalenol (DON) detection in wheat. The MBs-cDNA@Apt-AuNCs 519 was established using green emission gold nanoclusters (AuNCs 519 ) with aggregation-induced emission properties as signal probes and combining amino-modified DON-aptamer (Apt), biotin-modified DNA strand (the partially complementary to Apt (cDNA)), and streptavidin-modified magnetic beads (MBs). The Apt-AuNCs 519 were well connected with MBs-cDNA without DON but dissociated from MBs-cDNA@Apt-AuNCs 519 with the addition of DON, leading to a noticeable reduction in the fluorescent intensity of the aptasensor. Moreover, this fluorescence aptasensor showed two linear relationships in the concentration range of 0.1-50 ng/mL and 50-5000 ng/mL with a limit of detection of 3.73 pg/mL with good stability, reproducibility and specificity. The results were consistent with high-performance liquid chromatography and enzyme-linked immunosorbent assay methods, further indicating the potential of this method for accurate trace detection of DON in wheat.
Competing Interests: Declaration of interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
Databáze: MEDLINE