[Automatic ICD-10 coding : Natural language processing for German MRI reports].
Autor: | Mittermeier A; Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland. Andreas.Mittermeier@med.uni-muenchen.de.; Munich Center for Machine Learning (MCML), München, Deutschland. Andreas.Mittermeier@med.uni-muenchen.de., Aßenmacher M; Institut für Statistik, LMU München, München, Deutschland., Schachtner B; Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland.; Munich Center for Machine Learning (MCML), München, Deutschland., Grosu S; Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland., Dakovic V; Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland., Kandratovich V; Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland., Sabel B; Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland., Ingrisch M; Klinik und Poliklinik für Radiologie, LMU Klinikum, LMU München, München, Deutschland.; Munich Center for Machine Learning (MCML), München, Deutschland. |
---|---|
Jazyk: | němčina |
Zdroj: | Radiologie (Heidelberg, Germany) [Radiologie (Heidelb)] 2024 Oct; Vol. 64 (10), pp. 793-800. Date of Electronic Publication: 2024 Aug 09. |
DOI: | 10.1007/s00117-024-01349-2 |
Abstrakt: | Background: The medical coding of radiology reports is essential for a good quality of care and correct billing, but at the same time a complex and error-prone task. Objective: To assess the performance of natural language processing (NLP) for ICD-10 coding of German radiology reports using fine tuning of suitable language models. Material and Methods: This retrospective study included all magnetic resonance imaging (MRI) radiology reports acquired at our institution between 2010 and 2020. The codes on discharge ICD-10 were matched to the corresponding reports to construct a dataset for multiclass classification. Fine tuning of GermanBERT and flanT5 was carried out on the total dataset (ds Results: The total dataset consisted of 100,672 radiology reports, the reduced subsets ds Conclusion: Finely tuned language models can reliably predict ICD-10 codes of German magnetic resonance imaging (MRI) radiology reports across various settings. As a coding assistant flanT5 can guide medical coders to make informed decisions and potentially reduce the workload. (© 2024. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.) |
Databáze: | MEDLINE |
Externí odkaz: |